1. Problems

1. The diagram below shows part of a circuit in which a wire carries current into a device. The current is plotted as a function of time. A system boundary is drawn around the device.

Suppose that the charge stored in the device is zero at time zero. Find and plot the stored charge as a function of time.

2. The diagram below shows part of a circuit in which a wire carries current into a device. The current is given as a function of time by $i(t) = -5e^{-10^3 t}$ mA, $t \ge 0$. A system boundary is drawn around the device. Suppose at time t = 0 there is $q_0 = 2 \mu C$ of charge stored in the device.

Find the charge stored in the device as a function of time. Plot your result, labeling all significant charge values and times.

3. The diagram below shows part of a circuit in which a wire carries current into a device. A system boundary is drawn around the device. Suppose that the charge stored in the device is given as a function of time by $q_{sys}(t) = 50\cos(2\pi 60t)$ mC.

Find the current i(t) as a function of time. Plot your result, showing all significant current values and times.

- 4. The circuit shown below contains five circuit elements including the source.
 - A. Label the voltages and currents in the circuit using the passive sign convention.
 - B. Now repeat part A, but use the active sign convention for the voltage source.

- 5. The circuit shown below contains six elements.
 - A. Label the element voltages and currents using the passive sign convention.
 - B. Repeat part A, but change at least one of your voltage reference directions.

6. In the circuit shown below the current i(t) is given by $i(t) = 2\cos(2\pi 1000t)$ mA.

- A. In which direction (right or left) is the current flowing at time t = 0?
- B. In which direction is the current flowing at time t = 0.5 ms?
- C. In copper wire current is caused by the motion of free electrons. In which direction are the electrons responsible for i(t) moving at time t = 0.5 ms?
- 7. The voltages and currents in the circuit shown below are constant with time.

- A. Which elements are labeled using the passive sign convention?
- B. Find the power *absorbed* by each element.
- C. Determine which elements are sources.
- 8. In the circuit shown below the voltages and currents are given by

$$v_A(t) = 50\cos(2\pi 60t) \text{ V}$$
 $i_A(t) = 4\cos(2\pi 60t) \text{ mA}$ $v_B(t) = 150\cos(2\pi 60t) \text{ V}$ $i_B(t) = -4\cos(2\pi 60t) \text{ mA}$ $v_C(t) = 100\cos(2\pi 60t) \text{ V}$ $i_C(t) = 10\cos(2\pi 60t) \text{ mA}$ $v_D(t) = 100\cos(2\pi 60t) \text{ V}$ $i_D(t) = -6\cos(2\pi 60t) \text{ mA}$.

- A. Find the instantaneous power absorbed by each element.
- B. Verify that the sum of the powers absorbed by each element is identically zero.
- C. Which of the elements are *always* sources?
- 9. The diagram below shows a circuit containing an element E whose voltage and current are given by $v_E(t) = 150(1 e^{5000t})$ V and $i_E(t) = 25e^{-5000t}$ mA, respectively.

- A. Find the instantaneous power absorbed by element E.
- B. Find the total energy absorbed by element E.
- C. Can you tell what happens to the energy after it has been absorbed by element E?
- 10. The diagram below shows a circuit containing an element G whose voltage and current are given by $v_G(t) = 0.2\cos\left(2\pi5\times10^6t + \frac{\pi}{6}\right) \text{V}$ and $i_G(t) = 15\cos\left(2\pi5\times10^6t + \frac{\pi}{3}\right)\mu\text{A}$, respectively.
 - A. Find the instantaneous power absorbed by element G.

- B. During the interval $0 \le t \le 200$ ns, find the times during which element G absorbs power.
- C. During the interval $0 \le t \le 200$ ns, find the times during which element G is a source of power.
- D. On the average, is element G a source or a load?

11. The diagram below is a simplification of a part of an automotive lighting circuit. Three light bulbs are connected in a parallel with a 12 V battery. The "15 A" fuse is normally a short circuit, but the metal element inside it will melt causing the fuse to become an open circuit if more than 15 A flows through it. Suppose bulb A draws 36 W, bulb B draws 24 W, and bulb C draws 18 W.

- A. How much current is drawn by bulb A? by bulb B? by bulb C?
- B. How much power must the battery supply?
- C. Using your answer to part B, find the current I.
- D. Suppose instead of three dissimilar bulbs as shown, the circuit consists of *n* type B bulbs in parallel. Find the maximum value of *n* for which the circuit will operate without blowing the fuse.
- 12. In the circuit shown below

- A. Find the current *I*.
- B. Find the power delivered to the resistor.

- 13. A 10 kV power line 5 km long has a total resistance of 0.5 Ω . The current flowing is 15 A. Find the power loss in the line.
- 14. In the circuit shown below

- A. Find the current i(t).
- B. Find the total energy delivered to the resistor.
- 15. In the circuit of Problem 11, find the resistance of a light bulb of type A, of type B, of type C.
- 16. In the circuit shown below $v_R(t) = 10\cos\left(2\pi 100t + \frac{\pi}{6}\right)$ V and

$$i_R(t) = 0.001 \cos\left(2\pi 100t - \frac{\pi}{6}\right) A$$
.

- A. Find the instantaneous power delivered to the element R.
- B. Could the element R be a resistor? Explain.
- 17. The circuit shown below is a simplified model of an amplifier.

$$V_{\text{in}} = 10 \text{ V} + 4.7 \text{ k}\Omega + V_{1} \text{ (5 mS)} V_{1} + V_{2} \text{ 10} V_{2} + V_{2} \text{ 10} V_{2} + V_{0ut}$$

- A. Find the output voltage V_{out} .
- B. Find the voltage gain $rac{V_{
 m out}}{V_{
 m in}}$.

- A. Find the current i(t).
- B. Plot the voltage $v_s(t)$ and the current i(t) on the same axes. Plot a few cycles, so that the shapes and relationships are clear. You may have to scale one of the quantities to make the plot easy to read.
- C. Find the instantaneous power p(t) delivered to the capacitor. Find the energy $W_{\epsilon}(t)$ stored in the capacitor as a function of time. Plot p(t) and $W_e(t)$ on the same axes. Verify that your result satisfies the accounting equation for electrical energy.
- D. Plot the stored energy $W_{e}(t)$ and the voltage $v_{s}(t)$ on the same axes. Verify that the stored energy is zero whenever the voltage across the capacitor is zero.

19. In the circuit shown below,

$$i_s(t) = 50\cos(2\pi 10^6 t) \text{ mA}$$
 30 mH $v(t)$

- A. Find the voltage v(t).
- B. Plot the current $i_s(t)$ and the voltage v(t) on the same axes. Plot a few cycles, so that the shapes and relationships are clear. You may have to scale one of the quantities to make the plot easy to read.
- C. Find the instantaneous power p(t) delivered to the inductor. Find the energy $W_m(t)$ stored in the capacitor as a function of time. Plot p(t) and $W_m(t)$ on the same axes. Verify that your result satisfies the accounting equation for electrical and magnetic energy.
- D. Plot the stored energy $W_m(t)$ and the current $i_s(t)$ on the same axes. Verify that the stored energy is zero whenever the current through the inductor is zero.

20. In the circuit shown below,

- A. Find the output current $i_o(t)$. Assume $i_o(t) \equiv 0$ for t < 0. Plot your result, showing all significant current values and times.
- B. Find the instantaneous power delivered by the dependent source.
- C. Find the energy stored in the 0.2 H inductor as a function of time. Plot your result, showing all significant energy values and times.
- 21. In the circuit shown below $v(t) = 25e^{-\left(\frac{t}{15\times10^{-6}}\right)}$ V, $t \ge 0$.

- A. Find the current i(t). Be careful about the reference direction.
- B. Find the instantaneous power p(t) flowing into the capacitor.
- C. For $t \ge 0$ is power actually flowing from the capacitor to the resistor or from the resistor to the capacitor?
- D. Find the energy $W_e(0)$ stored in the capacitor at time t = 0.
- E. Find the total energy turned into heat in the resistor during the interval $0 \le t < \infty$.
- 22. In the circuit shown below $i(t) = 5.00e^{-\left(\frac{t}{5 \times 10^{-6}}\right)}$ mA, $t \ge 0$.

- A. Find the voltage v(t). Be careful about the reference direction.
- B. Find the instantaneous power p(t) flowing into the inductor.
- C. For $t \ge 0$ is power actually flowing from the inductor to the resistor or from the resistor to the inductor?
- D. Find the energy $W_m(0)$ stored in the inductor at time t = 0.
- E. Find the total energy turned into heat in the resistor during the interval $0 \le t < \infty$.