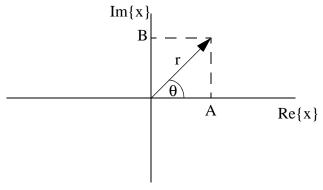
Complex Number Refresher

EE's use $j=\sqrt{-1}$ instead of i, so that we don't confuse current, which we often label as i, with imaginary numbers

A complex number x = A + jB, note the underlining to denote a complex number.

- A bold font is also often used to denote complex numbers.
- it has a real part $Re\{x\}=A$
- it has an imaginary part $Im\{x\}=B$

Complex numbers can be drawn as vectors on the COMPLEX PLANE:



As a vector, we can speak of a complex number in terms of it's magnitude, r, and angle, θ .

- $\underline{\mathbf{x}} = A + \mathbf{j}B = r \angle \mathbf{\theta}$
- $r = |\underline{\mathbf{x}}|$

To convert between polar and cartesian coordinates:

• If you have cartesian form x = A + jB

•
$$r = |\underline{\mathbf{x}}| = \sqrt{A^2} + B^2$$

•
$$\theta = \operatorname{atan}\left(\frac{B}{A}\right)$$

- if you have polar form $x = r \angle \theta$
 - $A = r\cos(\theta)$
 - $B = r\sin(\theta)$

/ You MUST use "four-quadrant" arctangent, since the standard "ATAN" button on your calculator does only a "two-quadrant" arctangent, meaning that the returned angle is always between -90 and +90 degrees (i.e., quadrants 1 and 4). The reason is that the signs of A and B introduce an ambiguity; 2+j2 and -2-j2 both have a positive ratio B/A, so simply doing ATAN on -2/-2 will erroneously yield an angle of +45 degrees.

The best solution is to learn how to use polar-to-rectangular conversion functions on your calculator, or even better, the complex numbers facilities.

There is another form that we use called Exponential Form

- $re^{j\theta} = r\cos(\theta) + jr\sin(\theta)$ see Euler's Formula on page 158 of textbook
- This is just a complex number with polar form, $r \angle \theta$, and cartesian form, $r \cos(\theta) + jr \sin(\theta)$

So now we have $\underline{x} = A + jB = r \angle \theta = re^{j\theta}$. But WHY do we care about these different forms?

ANSWER = Complex Arithmetic

When doing addition and subtraction of complex numbers use Cartesian Form:

•
$$\underline{\mathbf{x}}_1 = A + \mathbf{j}B$$
 and $\underline{\mathbf{x}}_2 = C + \mathbf{j}D$

$$\bullet \quad \underline{\mathbf{x}_1} + \underline{\mathbf{x}_2} = (A+C) + \mathbf{j}(B+D)$$

•
$$x_1 - x_2 = (A - C) + j(B - D)$$

• Example
$$x_1 = -3 + j6$$
 and $x_2 = 2 - j3$

$$\bullet \quad \underline{x_1} + \underline{x_2} = -1 + j3$$

•
$$x_1 - x_2 = -5 + j9$$

When doing multiplication and division of complex numbers use Polar Form

•
$$\underline{\mathbf{x}}_1 = r_1 \angle \mathbf{\theta}_1$$
 and $\underline{\mathbf{x}}_2 = r_2 \angle \mathbf{\theta}_2$

•
$$\underline{x_1}\underline{x_2} = r_1r_2\angle(\theta_1 + \theta_2) = r_1e^{j\theta_1}(r_2e^{j\theta_2}) = r_1r_2e^{j\theta_1}e^{j\theta_2} = r_1r_2e^{j(\theta_1 + \theta_2)}$$

•
$$\underline{x_1}/\underline{x_2} = (r_1/r_2)\angle(\theta_1 + \theta_2) = \frac{r_1e^{j\theta_1}}{r_2e^{j\theta_2}} = \frac{r_1}{r_2}(e^{j\theta_1}e^{-j\theta_2}) = \frac{r_1}{r_2}e^{j(\theta_1 - \theta_2)}$$

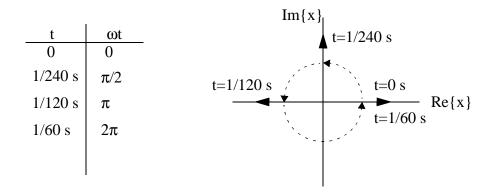
• Example
$$\underline{x}_1 = 3\angle 10^\circ$$
 and $\underline{x}_2 = -2\angle -5^\circ$

•
$$\underline{x}_1 \underline{x}_2 = -6 \angle 5^\circ$$

•
$$\underline{x_1}/\underline{x_2} = -1.5\angle 15^\circ$$

We represent AC voltages and currents with sinusoids: $A\cos(\omega t)$

- $A\cos(\omega t) = \frac{A}{2}e^{j\omega t} + \frac{A}{2}e^{-j\omega t}$ see Euler's Formula on page 158 of Text
- $Ae^{j\omega t}$ is a complex number in exponential form, but what does this mean?
- A is simply the magnitude of the vector, so what is $e^{j\omega t}$?
- If we convert this to polar form we have $e^{j\omega t} = 1\angle\omega t$, which is a unit vector with an angle of ωt . Let's assume that f = 60Hz so that $\omega = 2\pi f = 120\pi$ and see what $e^{j\omega t} = 1\angle\omega t$ looks like in the complex plane...



• So what we have is a vector that rotates around the complex plane at 60 times per second.

Sometimes the AC voltages and currents have a phase shift: $A\cos(\omega t + \theta)$

- $A\cos(\omega t + \theta) = \frac{A}{2}e^{j(\omega t + \theta)} + \frac{A}{2}e^{-j(\omega t + \theta)}$
- How does this relate to the example above?
- Let's assume the same frequency as before, but now we have a phase shift of $\theta = \pi/4$.

			$\operatorname{Im}\{x\}_{\mid}$	
	t	$\omega t + \pi/4$	t=1/240 s $t=0 s$	
	0	$\pi/4$	t=1/60 s	
1/	/240 s	$3\pi/4$		
1/	/120 s	$5\pi/4$	Re{x	}
1/	/60 s	$9\pi/4$		
			t=1/120 s	

• Produces the same rotating vectors as before except that at time t=0 s the vectors start at +45 degrees from the Real Axis.