
Complex Number Refresher

EE’s use  instead of i, so that we don’t confuse current, which we often label as i, with 
imaginary numbers

A complex number , note the underlining to denote a complex number. 
• A bold font is also often used to denote complex numbers.
• it has a real part Re{x}=A
• it has an imaginary part Im{x}=B

Complex numbers can be drawn as vectors on the COMPLEX PLANE:

As a vector, we can speak of a complex number in terms of it’s magnitude, r, and angle, θ.
•

•

To convert between polar and cartesian coordinates:
• If you have cartesian form 

•

•

• if you have polar form 

•
•

There is another form that we use called Exponential Form

•   see Euler’s Formula on page 158 of textbook
• This is just a complex number with polar form, , and cartesian form, 
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ECE
You MUST use "four-quadrant" arctangent, since the standard "ATAN" button on your calculator does only a "two-quadrant" arctangent, meaning that the returned angle is always between -90 and +90 degrees (i.e., quadrants 1 and 4). The reason is that the signs of A and B introduce an ambiguity; 2+j2 and -2-j2 both have a positive ratio B/A, so simply doing ATAN on -2/-2 will erroneously yield an angle of +45 degrees.

The best solution is to learn how to use polar-to-rectangular conversion functions on your calculator, or even better, the complex numbers facilities.
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So now we have . But WHY do we care about these different forms?

ANSWER = Complex Arithmetic
When doing addition and subtraction of complex numbers use Cartesian Form:

•  and 

•

•

• Example  and 

•

•

When doing multiplication and division of complex numbers use Polar Form
•  and 

•

•

• Example   and 

•

•
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We represent AC voltages and currents with sinusoids: 

•   see Euler’s Formula on page 158 of Text

•  is a complex number in exponential form, but what does this mean?

• A is simply the magnitude of the vector, so what is ?

• If we convert this to polar form we have , which is a unit vector with an 
angle of . Let’s assume that  so that  and see what 

 looks like in the complex plane...

• So what we have is a vector that rotates around the complex plane at 60 times per second.

Sometimes the AC voltages and currents have a phase shift: 

•

• How does this relate to the example above?
• Let’s assume the same frequency as before, but now we have a phase shift of .

• Produces the same rotating vectors as before except that at time t=0 s the vectors start at 
+45 degrees from the Real Axis.
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