CSSE 230 Day 17

AVL Insertion, Deletion
Other Trees and their representations




CSSE 230 Day 17 Announcements

» Due now:
> 00 Queens (One submission for both partners is sufficient)

» Due at the beginning of Day 18:
- WAS8
o Sliding Blocks Milestone 1

Thursday: Convocation schedule
- Section 01: 8:50-10:15 AM
> Section 02: 10:20-11:00 AM, 12:35-1:15 PM
> Convocation speaker
- Risk Analysis Pioneer John D. Graham
- The promise and perils of science and technology regulations

- 11:T0 a.m. to 12:15 p.m. in Hatfield Hall.

o Part of Thursday's class time will be time for you to work with your
partner on SlidingBlocks

Due at the beginning of Day 19: WA9

Due at the beginning of Day 21:
o Sliding Blocks Final submission

v

v Vv




Agenda

» Non-attacking Queens Solution
» Insertions and Deletions in AVL trees

» Other Search Trees
» BSTWithRank




What are your questions? About...

» WAS
» Tree properties

» Height-balanced Trees
» SlidingBlocks




OO Queens Solution

CanAttack()
toString( )
findNext()




OOQueens: canAttack( ), toString()

public boolean canAttack(int row, int col) {

int columnDifference = col - column;

return
currentRow == row || // same row
currentRow == row + columnDifference || // same "down" diagonal
currentRow == row — columnDifference || // same "up" diagonal
neighbor.canAttack (row, col); // If I can't attack it, maybe

// one of my neighbors can.

@Override
public String toString() {
return neighbor.toString() + " " + currentRow;

}




O0OQueens: findNext()

public boolean findNext () {
if (currentRow == MAXROWS) {
// no place to go until neighbors move.
if (!neighbor. findNext ())
return false; // Neighbor can't move, so I can't either.
currentRow = 0; // about to be bumped up to 1.
}
currentRow++;
return testOrAdvance(); // See if this new position works.

You did not have to write this one:

// If this is a legal row for me, say so.

// If not, try the next row.

private boolean testOrAdvance () ({

if (neighbor.canAttack (currentRow, column))
return findNext ();

return true;



AVL Trees

Insertion, deletion, rebalancing...
...all in O(log N) time




Recap: AVL trees

4

An AVL tree is

1. height-balanced
2. a Binary search tree

We saw that the maximum height of an AVL tree
with N nodes is O(log n).
We want to show that after an insertion or deletion
(also O(log n) since the height is O(log n)),
we can rebalance the tree in O(log n) time.

If that is true, then find, insert, and remove, will all be

O(Log N).
An extra field is needed in each node in order to
achieve this speed. Values: |/ = \

We call this field the balance code.
T_he balance code could be represented by only two



Balancing an AVL tree after insertion

» Assume that the tree is height-balanced before the
Insertion.

» Start at the inserted node (always a leaf).

» Move back up the tree to the first (lowest) node (if any)
where the heights of its subtrees now differ by more
than one.

- We’ll call that node A in our diagrams.

» Do the appropriate single or double rotation to balance
the subtree whose root is at this node.

» If a rotation is needed, we will see that the combination
of the insertion and rotation leaves this subtree with the
same height that it had before insertion.




Which kind of rotation to do?

Depends on the first two links in the path from
the node with the imbalance (A) down to the
newly-inserted node.

(down from A)

(down from A's

(rotate "around

child) A's position")
Left Left Single right
Left Right Double right
Right Right Single left
Right Left Double left




Single left rotation (right is the mirror image
of this picture)

Diagrams are from Data Structures by E.M. Reingold
and W.J. Hansen.

P



Your turn — work with a partner

#1

NG newv

» Write the method:

BalancedBinaryNode singleRotateleft (
BalancedBinaryNode parent, /* A */
BalancedBinaryNode child /* B */ ) {

v

}

Returns a reference to the new root of this subtree.
Don’t forget to set the balanceCode fields of the nodes.

v v




Double left rotation (right is the mirror image)
Weiss calls this "right-left double rotation”

\_ / {OI‘) \\_ 7
naws ot {l"\\

Figure 7.15

The transformations used to rebalance a height-balanced tree after the insertion
of a new element: (a) rotation around A, (b) double rotation around A. The height
condition codes in A and C in the right-hand drawing of (b) depend on whether
the new element is at the bottom of 7, or 7;. Both T, and T; are empty when B
is the new element (see also Exercise 9). Notice that in each transformation the
inorder of the tree is unchanged and the height of the tree after the transformation
is the same as the height of the tree before the insertion. In each case, there are
corresponding mirror-image transformations.




Your turn — (after class?)

» Write the method:

» BalancedBinaryNode doubleRotateleft (
BalancedBinaryNode parent, /* A */
BalancedBinaryNode child, /* C */
BalancedBinaryNode grandChild /* B */ ) ({

}
» Returns a reference to the new root of this

subtree.




A sample AVL tree

JO
e (1Y
8(=) (/) ¢(= () P(=) v(= r()
p(=) [ (=) M(=) rR=) x(=)

5 e & E
L N 0 S

Insert HA into the tree, then DA, then O.

&ﬂom the original tree, then I, J, V.



Your turn again (after class)

» Start with an empty AVL tree.

» Add elements in the following order; do
the appropriate rotations when needed.
- 12345611131210987

» How should we rebalance if each of the
following sequences is deleted from the

above tree?

- (10 9 78) (13) (1 5)

- For each of the three sequences, start with the
original 13-element tree. E.g. when deleting
13, assume 10 9 8 7 are still in the tree.




Other approaches to Tree Balancing

» Red-black trees

» AA trees

- Red-Black and AA-trees are simpler to implement than AVL
trees, but harder to understand why they work.

» balanced multiway trees (B+ trees)
- Used for disk-based searches, and for database index storage.
> Algorithms similar to red-black trees.

» Splay trees
- Reasonably simple algorithms, amortized log N time.

» Skip Lists
- An alternative to trees

» We will talk about one or more of these alternatives near the
end of the course.




Another approach to search trees

» Digital search tree (trie).
» We store the data digit-by-digit (or letter by

letter).
EABCDEFGHI JKLMNOPQRSTUVWXY ?

» How to actually ANk [ s ’
/4 /N /
represent nodes?




Improving Trie Space-efficiency

» Represent it as a binary tree

b C_olla_lﬁse "single branch"” paths.
» Have a single "e-node” /iqim
N

instead of

N

SH

nhn—TOOmx

H




Interlude: What is Computer Science?

What is the central core of the
subject? What is it that
distinguishes it from the separate
subjects with which it is related?

What is the linking thread which

gathers these disparate branches
into a single discipline? My
answer to these questions is
simple ——- jt /s the art of
programming a computer.

This slide is from a talk by Owen
Astrachan, given at SIGCSE 2004.




Binary Tree With Rank

» A BST can be an efficient way to implement ordered
lists. If we keep the tree balanced:
> insertion is O(log N)
- deletion is O(log N)
- search for an element is O(log N)
» What about finding the kt" smallest element in the
(zero-based) list?
- How would you do it?
- What is the running time?
- Can we do better?

- Can we do findKth () in time thatis proportional to the
height of the tree?




Add a rank Field to BinaryNode

» It tells the (zero-based) inorder position of this
node within its subtree
> j.e., the size of its left subtree

v

class BinaryNodeWithRank extends BinaryNode {
int rank = 0O;

}

But we'll just add the new field to BinaryNode

v

How would we do findKth? Checlf out the
How about insert? BSTWithRank

You can think about delete later Project from
your individual

repository

v Vv

>




