
Tree Properties (size vs height)

Balanced Binary Trees

� Due now:
◦ WA 7 WA 7 WA 7 WA 7 (This is the end of the grace period).

◦ Note that a grace period takes the place of a late day.

◦ Now is the last time you can turn this in for credit.

� Due at the beginning of Day 17:
◦ OO Queens exercise from Day 15 classOO Queens exercise from Day 15 classOO Queens exercise from Day 15 classOO Queens exercise from Day 15 class

� Due at the beginning of Day 18:
◦ WA8WA8WA8WA8

◦ Sliding Blocks Milestone 1Sliding Blocks Milestone 1Sliding Blocks Milestone 1Sliding Blocks Milestone 1

� I eliminated the NameThatSort proramming
problem, to leave you more time to work on
SlidingBlocks and Scrabble.

� Touch Base with your SlidingBlocks partner.

� Height vs size of binary trees

� The need for balanced trees

� Keeping trees completely balanced

� Height-Balanced (H-B) trees

� WA8

� Exhaustive search & Backtracking

� Sliding Blocks Problem

� Anything else

public static BinaryNode buildFromPreOrderInorder(String pre,

String in) {

if (pre.length() == in.length())

return preIn(pre, in);

throw new IllegalArgumentException();

}

private static BinaryNode preIn(String pre, String in) {

if (pre.equals(""))

return null;

char rootChar = pre.charAt(0);

int rootPos = in.indexOf(rootChar);

return new BinaryNode(rootChar,

preIn(pre.substring(1, rootPos+1), in.substring(0, rootPos)),

preIn(pre.substring(rootPos+1), in.substring(rootPos+1)));

}

Size vs Height

� A Binary Tree is either
◦ emptyemptyemptyempty, or

◦ consists ofconsists ofconsists ofconsists of:

� a distinguished node called the root, which contains
an element and two disjoint subtrees

� A left subtree TL, which is a binary tree

� A right subtree TR, which is a binary tree
root

TL

TR

Figure 18.20

Recursive view of the node height

calculation:

HT = Max (HL + 1, HR + 1)

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

� If TTTT is a tree, we'll often write h(T)h(T)h(T)h(T) for the
height of the tree, and N(T)N(T)N(T)N(T) for the number of
nodes in the tree

� For a particular h(T), what are the upper and
lower bounds on N(T)?
◦ Lower:Lower:Lower:Lower: N(T) ≥ (prove it by induction)

◦ UpperUpperUpperUpper N(T) ≤ (prove it by induction)

◦ Thus ≤ N(T) ≤ .

� Write bounds for h(T) in terms of N(T)
◦ Thus ≤ h(T) ≤ .

� A tree with the maximum number of nodes for
its height is a full full full full tree.
◦ Its height is O(log N)O(log N)O(log N)O(log N)

� A tree with the minimum number of nodes for
its height is essentially a .
◦ Its height is O(N)O(N)O(N)O(N)

� Height matters!
◦ We saw that the algorithms for search, insertion, and

deletion in a Binary Search Tree are O(h(T))O(h(T))O(h(T))O(h(T))

� Review:
◦ Efficiency of insertion, deletion, find for

� Array list

� Linked list

� BST insertion algorithm – O(height of tree)

� BST deletion algorithm – O(height of tree)

� BST search algorithm - – O(height of tree)

� Efficiency (worst case)?
◦ Can we get a better bound?

◦ What about balancing the tree each time?

◦ What do we mean by completely balanced?

◦ Insert E C G B D F A into a tree in that order.

◦ What is the problem?

◦ How might we do better? (less is more!)

� We'd like the worst-case time for find, insert, and delete to be
O(log N).

� The running time for find, insert, and delete are all proportional
to the height of the tree.

� Height of the tree can vary from log N to N.

� Keeping the tree completely balanced is too expensive. Can
require O(N) time to rebalance after insertion or deletion.

� Height-balanced trees may provide a solution.

◦ A BST T is height balancedheight balancedheight balancedheight balanced if T is empty, or if

� | height(TL) - height(TR) | ≤ 1, and

� TL and TR are both height-balanced.

� What can we say about the maximum height of an
height-balanced tree with N nodes?

DetailsDetailsDetailsDetails: next slide: next slide: next slide: next slide

Why do we use Why do we use Why do we use Why do we use
absolute value absolute value absolute value absolute value
in the formula?in the formula?in the formula?in the formula?

height-
balanced?

� We want to calculate the maximum height of
a height-balanced tree with N nodes.

� It’s not the shortest possible tree, but how
close is it?

� We first look at the dual concept: find the
minimum number of nodes in a HB tree of
height h.

� Make a table of heights and # of nodes.

� What can we say in general about height as a
function of number of nodes?

� Named for authors of original paper,
Adelson-Velskii and Landis (1962).

� It is a height-balanced Binary Search Tree.

� Recall: A BST T is height balanced if
◦ T is empty, or if

� | height(TL) - height(TR) | ≤ 1, and

� TL and TR are both height-balanced.

� Maximum height of an AVL tree with N
nodes is O(log N).

� For a Binary Search Tree (BST), worst-case for
insert, delete, and find operations are all O(height
of tree).

� Height of tree can vary from O(log N) to O(N).

� We showed that the height of a height-balanced
tree is always O(log N).

� Thus all three operations will be O(log N) ifififif we can
rebalance after insert or delete in time O(log N)

� An AVL tree is
1. height-balanced
2. a Binary search tree

� We saw that the maximum height of an AVL tree
with N nodes is O(log n).

� We want to show that after an insertion or deletion
(also O(log n) since the height is O(log n)),
we can rebalance the tree in O(log n) time.
◦ If that is true, then find, insert, and remove, will all be

O(Log N).
� An extra field is needed in each node in order to

achieve this speed. Values: / = / = / = / = \\\\
We call this field the balance codebalance codebalance codebalance code.

� The balance code could be represented by only two
bits.

� Assume that the tree is height-balanced before the
insertion.

� Start at the inserted node (always a leaf).

� Move back up the tree to the firstfirstfirstfirst (lowest) node (if any)
where the heights of its subtrees now differ by more
than one.
◦ We’ll call that node AAAA in our diagrams.

� Do the appropriate single or double rotation to balance
the subtree whose root is at this node.

� If a rotation is needed, we will see that the combination
of the insertion and rotation leaves this subtree with the
same height that it had before insertion.

� So why is the algorithm O(log N)?

Depends on the first two links in the path from
the node with the imbalance (A) down to the
newly-inserted node.

First link

(down from A)

Second link

(down from A's

child)

Rotation type

(rotate "around

A's position")

Left Left Single right

Left Right Double right

Right Right Single left

Right Left Double left

Diagrams are from Data Structures by E.M. Reingold

and W.J. Hansen.

