
6/7/2010

1

Variable-length character codes

Huffman Trees

YOU SAY GOODBYE. I SAY HELLO. HELLO, HELLO. I DON'T KNOW WHY YOU SAY GOODBYE, I SAY HELLO.

SPACE 17 A 4 U 2

O 12 S 4 W 2

Y 9 I 3 N 2

L 8 D 3 K 1

E 6 COMMA 2 T 1

H 5 B 2 APOSTROPHE 1

PERIOD 4 G 2

Letter frequencies

•There are 90 characters altogether.

•How many total bits in the ASCII representation of this string?

•We can get by with fewer bits per character (custom code)

•How many bits per character? How many for entire message?

•Do we need to include anything else in the message?

•How to represent the table?

1. count

2. ASCII code for each character How to do better?

6/7/2010

2

� Main Principle:
◦ Declaration of Independence doesn’t apply to
characters

◦ Not all characters are created equalNot all characters are created equalNot all characters are created equalNot all characters are created equal!!!!

� Principles for determining a scheme for creating Principles for determining a scheme for creating Principles for determining a scheme for creating Principles for determining a scheme for creating
character codes:character codes:character codes:character codes:
1. Less-frequent characters have longer codes so that

more-frequent characters can have shorter codes
2. No code can be a prefix of another code

� Why is this restriction necessary?

� We assume that we have some routines for
packing sequences of bits into bytes and writing
them to a file, and for unpacking bytes into bits
when reading the file
◦ Weiss has a very clever approach:
� BitOutputStreamBitOutputStreamBitOutputStreamBitOutputStream and BitInputStreamBitInputStreamBitInputStreamBitInputStream

� methods writeBit and readBit allow us to logically read or
write a bit at a time

6/7/2010

3

� Named for David HuffmanNamed for David HuffmanNamed for David HuffmanNamed for David Huffman
◦ http://en.wikipedia.org/wiki/David_A._Huffmanhttp://en.wikipedia.org/wiki/David_A._Huffmanhttp://en.wikipedia.org/wiki/David_A._Huffmanhttp://en.wikipedia.org/wiki/David_A._Huffman

◦ Invented while he was a graduate student at MIT.Invented while he was a graduate student at MIT.Invented while he was a graduate student at MIT.Invented while he was a graduate student at MIT.

◦ Huffman never tried to patent an invention from his Huffman never tried to patent an invention from his Huffman never tried to patent an invention from his Huffman never tried to patent an invention from his
work. Instead, he concentrated his efforts on education. work. Instead, he concentrated his efforts on education. work. Instead, he concentrated his efforts on education. work. Instead, he concentrated his efforts on education.
In Huffman's own words, "My products are my students."In Huffman's own words, "My products are my students."In Huffman's own words, "My products are my students."In Huffman's own words, "My products are my students."

� Principles of variablePrinciples of variablePrinciples of variablePrinciples of variable----length character codes:length character codes:length character codes:length character codes:
◦ Less-frequent characters have longer codes

◦ No code can be a prefix of another code

� We build a tree (based on character frequencies)
that can be used to encode and decode messages

Draw part

of the Tree

Decode a

"message"

6/7/2010

4

I 1

R 1

N 2

O 3

A 3

T 5

E 8

•Start with a separate tree for each

character (in a priority queue).

•Repeatedly merge the two lowest

(total) frequency trees

•Use the tree to encode NATION.

•How would we decode this message?

Huffman trees are provably optimal among

single-character codes.

� When we send a message, the code table can
basically be just the list of characters and
frequencies
◦ Why?

6/7/2010

5

� This code provides human-readable output to help us

understand the Huffman algorithm.

� We will deal with it at the abstract level; "real" code to do file

compression is found in DS chapter 12.

� I am confident that you can figure out the other details if you

need them.

� This code is based on code written by Duane Bailey, in his

book JavaStructures.

� A great thing about this example is the use of various data

structures (Binary Tree, Hash Table, Priority Queue).

� Leaf. Leaf. Leaf. Leaf. Represents a leaf node in a Huffman tree.
◦ Contains the character and a count of how many times it
occurs in the text.

� HuffmanTreeHuffmanTreeHuffmanTreeHuffmanTree: : : : Each node contains the total
weight of all characters in the tree, and either a
leaf node or a binary node with two subtrees that
are Huffman trees.
◦ The contents field of a non-leaf node is never used; we
only need the total weight.

◦ compareTo returns its result based on comparing the
total weights of the trees.

6/7/2010

6

� Huffman: Huffman: Huffman: Huffman: Contains mainmainmainmain The algorithm:The algorithm:The algorithm:The algorithm:
◦ Count character frequencies and build a list of Leaf nodes
containing the characters and their frequencies.
◦ Use these nodes to build a sorted list (treated like a priority
queue) of single-character Huffman trees.

◦ dodododo

� Take two smallest (in terms of total weight)
trees from the sorted list

� Combine these nodes into a new tree whose
total weight is the sum of the weights of the new
tree

� Put this new tree into the sorted list.
while there is more than one tree left. while there is more than one tree left. while there is more than one tree left. while there is more than one tree left.

The one remaining tree will be an optimal tree for the
entire message.

� … and answer quiz questions 8-12

� You can do this with one or two other people

� Each of you should write the answers on your
quiz paper

� Code is in your repository
◦ Project name: Huffman-Bailey-JFC

6/7/2010

7

� These are mainly here so that
◦ You can see an overview of the most important
parts of the code before looking at the code on-
line.

◦ After you have looked at the on-line code, if you
ask any questions about it in class, we can easily
refer to the code together.

class Leaf { // Leaf node of a Huffman tree.

char ch; // the character represented

// by this node.

int frequency; // frequency of this

// character in message.

public Leaf(char c, int freq) {

ch = c;

frequency = freq;

}

}

6/7/2010

8

class HuffmanTree implements Comparable<HuffmanTree> {

BinaryNode root; // root of tree

int totalWeight; // weight of tree

static int totalBitsNeeded;

// bits needed to represent entire message

// (not including code table).

public HuffmanTree(Leaf e) {

root = new BinaryNode(e, null, null);

totalWeight = e.frequency;

}

public HuffmanTree(HuffmanTree left, HuffmanTree right) {

// pre: left and right non-null

// post: merge two trees together and add their weights

this.totalWeight = left.totalWeight + right.totalWeight;

root = new BinaryNode(null, left.root, right.root);

}

public int compareTo(HuffmanTree other) {

return (this.totalWeight - other.totalWeight);

}

public void print() {

// print out strings associated with characters in tree

totalBits = 0;

print(this.root, "");

System.out.println("Total bits for entire message: "+ totalBits);

}

protected static void print(BinaryNode r,

String representation) {

// print out strings associated with chars in tree r,

// prefixed by representation

if (r.getLeft() != null) { // interior node

print(r.getLeft(), representation + "0"); // append a 0

print(r.getRight(), representation + "1"); // append a 1

} else { // leaf; print its code

Leaf e = (Leaf) r.getElement();

System.out.println("Encoding of " + e.ch + " is " +

representation + " (frequency was " + e.frequency +

", length of code is " + representation.length() + ")");

totalBits += (e.frequency * representation.length());

}

}

6/7/2010

9

public static void main(String args[]) throws Exception {

BufferedReader r = new BufferedReader(

new InputStreamReader(System.in));

HashMap<Character, Integer> freq =

new HashMap<Character,Integer>();

String oneLine; // current input line.

// First read the data and count characters

// Go through the input line, one character at a time.

while ((oneLine = r.readLine()) != null) {

for (int i = 0; i<oneLine.length(); i++) {

char c = oneLine.charAt(i);

if (freq.containsKey(c))

freq.put(c, freq.get(c)+1);

else // first time we've seen c

freq.put(c, 1);

}

}

// Now the table of frequencies is complete.

// put each character into its own Huffman tree

PriorityQueue<HuffmanTree> treeQueue =

new PriorityQueue<HuffmanTree>();

for (char c : freq.keySet())

treeQueue.add(new HuffmanTree(new Leaf(c, freq.get(c))));

HuffmanTree smallest, secondSmallest;

// merge trees in pairs until only one tree remains

while (true) {

smallest = treeQueue.poll();

secondSmallest = treeQueue.poll();

if (secondSmallest == null) break;

// add bigger tree containing both to the sorted list.

treeQueue.add(new HuffmanTree(smallest, secondSmallest));

}

// print the only tree left in the list of Huffman trees.

smallest.print();

}

6/7/2010

10

� Three or four bytes per character
◦ The character itself.
◦ The frequency count.

� End of table signaled by 0 for char and count.
� Tree can be reconstructed from this table.
� The rest of the file is the compressed
message.

� The Huffman code is provably optimal
among all single-character codes for a given
message.

� Going farther:
◦ Look for frequently occurring sequences of

characters and make codes for them as well.

6/7/2010

11

Definitions
Representations

Algorithms

6/7/2010

12

6/7/2010

13

A necessary but not sufficient A necessary but not sufficient A necessary but not sufficient A necessary but not sufficient
condition for a graph to be a tree.condition for a graph to be a tree.condition for a graph to be a tree.condition for a graph to be a tree.

� Adjacency matrix.

� Adjacency list.

� Look at both for the same graph.

� What does the square of an adjacency matrix
give us?

� Boolean adjacency matrix?

� Edge Listing.

