Further discussion of Hashing

Collision Resolution

What are your questions? About...

- SlidingBlocks
- WA12
- Recurrence Relations
- Quicksort
- Binary Heaps
, Hash Tables
- Anything Else

Quadratic probing

- With linear probing, if there is a collision at H , we try $H, H+1, H+2, H+3, \ldots$ until we find an empty spot.
Causes (primary) clustering
- With quadratic probing, we try $\mathrm{H}, \mathrm{H}+\mathrm{I}^{2}$. $H+2^{2}, H+3^{2}, \ldots$
- Eliminates primary clustering, but can cause secondary clustering.

Hints for quadratic probing

- Choose a prime number for the array size
- Guaranteed insertion and no cell is probed twice, provided That the table is no more than half full.
- Suppose the array size is P , a prime number greater than 3
- Show by contradiction that if i and j are $\leq\lfloor P / 2\rfloor$, and $i \neq j$, then $\mathrm{H}+\mathrm{i}^{2}(\bmod \mathrm{P}) \not \equiv \mathrm{H}+\mathrm{j}^{2}(\bmod \mathrm{P})$.
- Use an algebraic trick to calculate next index
- Replaces mod and general multiplication with subtraction and a bit shift
- Difference between successive probes:
- $\mathrm{H}+(\mathbf{i}+1)^{2}=\mathrm{H}+\mathrm{i}^{2}+(2 \mathbf{i}+1)$ [can use bit-shift for multiplication].
- nextProbe $=$ nextProbe $+(2 i+1)$;
if (nextProbe $>=P$), nextProbe $-=P$;

Quadratic probing analysis

- No one has been able to analyze it
- Experimental data shows that it works well
- Provided that the array size is prime, and is the table is less than half full

Other approaches to collision resolution

- Double hashing
- A second hash function is used to calculate an offset d to use in probing. Try locations $\mathrm{h}+\mathrm{d}, \mathrm{h}+2 \mathrm{~d}, \mathrm{~h}+3 \mathrm{~d}$, etc
- Separate chaining

Rather than an array of items, we use an array of linked lists. When multiple items hash to the same location, we add them to the list for that location

- Picture on next slide
- No clustering effect
- But we use space (that could have been used to make the array larger) for the links.
- If many items have the same hash code, the chains can become long.

Hashing with Chaining

Hash Table Exercise

~40 minutes
On a handout and in your repository
Do it with your "scrabble team"
There's a handout for everyone, but only one submission per

Data Compression

Fixed-length character codes
Variable-length character codes

Data compression

- How to fit data into a smaller space without losing any information?
- CPU calculations are many times faster than disk operations or network transmissions
- Thus it is faster to compress data before storing/sending it

Data Compression

YOU SAY GOODBYE. I SAY HELLO. HELLO, HELLO. I DON'T KNOW WHY YOU SAY GOODBYE, I SAY HELLO.
Letter frequencies

U	2
W	2
N	2
K	1
T	1
APOSTROPHE	1

- There are 90 characters altogether.
-How many total bits in the ASCII representation of this string?
-We can get by with fewer bits per character (custom code)
-How many bits per character? How many for entire message?
-Do we need to include anything else in the message?
\cdot How to represent the table?

1. count
2. ASCII code for each character How to do better?
