
6/7/2010

1

Basic operations
Implementation options

Binary Heaps

� Each element in the PQ has an associated
prioritypriorityprioritypriority, which is a non-negative integer.

� findMin()

� insert(item, priority)

� deleteMin()

6/7/2010

2

Recap: A complete binary tree and its array representation

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 21.2
Heap-order property

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

A Binary Heap is a

complete Binary Tree

(implemented as an array)

that has the heap-order

property.

In a binary heap, where do we find
•The smallest element?
•2nd smallest?
•3rd smallest?

6/7/2010

3

Figure 21.7
Attempt to insert 14, creating the hole and bubbling the hole up

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Create a "hole" where 14 can be inserted.

Recall that the
actual data
movement is
simply done by
array
manipulation

Figure 21.8
The remaining two steps required to insert 14 in the original heap
shown in Figure 21.7

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Analysis of

insertion

Your turn: Insert into an initially empty heap:
6 4 8 1 5 3 2 7

6/7/2010

4

Figure 21.10 Creation of the hole at the root

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

The min is at the root. Delete it, then use the percolateDown

algorithm to find the correct place for its replacement.

We must decide which child to promote, to make room for 31.

6/7/2010

5

Figure 21.11
The next two steps in the deleteMin operation

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 21.12
The last two steps in the deleteMin operation

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

6/7/2010

6

Compare node to its children,

moving root down and

promoting the smaller child until

proper place is found.

Analysis

� Worst case times:
◦ findMin: O(1)
◦ insert: O(log n)
◦ deleteMin O(log n)

� big-oh times for insert/delete are the same
as the balanced BST implementation,
◦ but these operations are much simpler,
◦ and don’t require space for pointers.

6/7/2010

7

� Start with empty heap

� Insert each array element into heap
� Repeatedly do deleteMin, copying elements back

into array.

� http://nova.umuc.edu/~jarc/idsv/lesson3.html
◦ Can be run in demo mode or practice mode.

� We can save space by doing the whole sort in
place, using a "maxHeap" (i.e. a heap where the
maximum element is at the root instead of the
minimum)

� Analysis?
◦ Next slide …Next slide …Next slide …Next slide …

� Add the elements to the heap
◦ Repeatedly call insert

� Remove the elements and place into the array
◦ Repeatedly call DeleteMin

� We can do better for the insertion part by
using BuildHeap

6/7/2010

8

BuildHeap takes a complete tree that is not a heap and

exhanges elements to get it into heap form

At each stage it takes a root plus two heaps and "percolates

down" the root to restore "heapness" to the entire subtree

Why this starting point?

Figure 21.17 Implementation of the linear-time buildHeap method

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

6/7/2010

9

Figure 21.18
(a) After percolateDown(6);
(b) after percolateDown(5)

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 21.19
(a) After percolateDown(4);
(b) after percolateDown(3)

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

6/7/2010

10

Figure 21.20

(a)After percolateDown(2);
(b) after percolateDown(1) and buildHeap terminates

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

� Find a summation that represents the
maximum number of comparisons required
to rearrange an array into a heap

� Evaluate the sum

� This was part of WA10

◦ The summation is

and the sum is N – H + 1

6/7/2010

11

Collision Resolution

� How is the data stored?

� How are the hash code and array capacity
used?

� What is a collision?

� How do we attempt to avoid collisions?

� Why can we seldom guarantee that there will
be no collisions?

6/7/2010

12

� When an item hashes to a table location
occupied by a non-equal item, simply use the
next available space.

� Try H+1, H+2, H+3, …
◦ With wraparound at the end of the array

� Problem: Clustering (picture on next slide)

� http://www.cs.auckland.ac.nz/software/AlgA
nim/hash_tables.html

� We’ll let it keep running while we look at
analysis.

Figure 20.4
Linear probing hash
table after each
insertion

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

6/7/2010

13

� Dependent on the load factorload factorload factorload factor, λ, which is the ratio of the number
of items in the table to the size of the table. Thus 0 ≤ λ ≤ 1.

� For a given λ, what is the expected number of probes before an
empty location is found?

� For simplicity, assume that all locations are equally likely to be
occupied, and equally likely to be the next one we look at. Then
the probability that a given cell is empty is 1 - λ, and thus the
expected number of probes before finding an empty cell is (write
it as a summation).

|
� For example, if λ is 0.75, the expected value is 4.

� The "equally likely" probability is not realistic, because of
clusteringclusteringclusteringclustering

� Large blocks of consecutive occupied cells are formed. Any
attempt to place a new item in any of those cells results in
extending the cluster by at least one item

� Thus items collide not only because of identical hash values, but
also because of hash values that happen to put them into the
cluster

� Average number of probes when λ is large:
◦ 0.5 [1 + 1/(1- λ)2].

� For a proof, see Knuth, The Art of Computer Programming, Vol 3: Searching
Sorting, 2nd ed, Addision-Wesley, Reading, MA, 1998.

◦ What are the values for λ = 0, 0.5, 0.75, 0.9?

◦ When When When When λλλλ approaches 1, this gets bad!approaches 1, this gets bad!approaches 1, this gets bad!approaches 1, this gets bad!

◦ But if λ is close to zero, then the average is near 1.0

6/7/2010

14

� Easy to implement

� Simple code has fast run time per probe

� Works well when load is low
◦ It could be more efficient just to rehash using a bigger

table once it starts to fill.

◦ Typically done in practice: rehash to an array that is
double in size once the load goes over 0.5

� What about other fast, easy-to-implement
strategies?

� With linear probing, if there is a collision at H,
we try H, H+1, H+2, H+3,... until we find an
empty spot.
◦ Causes (primary) clustering

� With quadratic probing, we try H, H+12.
H+22, H+32,...
◦ Eliminates primary clustering, but can cause

secondary clustering.

6/7/2010

15

� Choose a prime number for the array sizeChoose a prime number for the array sizeChoose a prime number for the array sizeChoose a prime number for the array size
◦ Guaranteed insertion and no cell is probed twice, provided

That the table is no more than half full.

◦ Suppose the array size is P, a prime number greater than 3

◦ Show by contradiction that if i and j are ≤QP/2R, and i≠j,
then H + i2 (mod P) T H + j2 (mod P).

� Use Use Use Use an algebraic an algebraic an algebraic an algebraic trick to calculate next trick to calculate next trick to calculate next trick to calculate next indexindexindexindex
◦ Replaces mod and general multiplication with subtraction

and a bit shift

◦ Difference between successive probes:

� H + (i+1)2 = H + i2 + (2i+1) [can use bit-shift for multiplication].

� nextProbe = nextProbe + (2i+1);
if (nextProbe >= P) nextProbe -= P;

