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Basic operations
Implementation options

Binary Heaps

� Each element in the PQ has an associated 
prioritypriorityprioritypriority, which is a non-negative integer.

� findMin()

� insert(item, priority)

� deleteMin( )
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Recap:  A complete binary tree and its array representation
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Figure 21.2
Heap-order property

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss      © 2002  Addison Wesley

A Binary Heap is a 

complete Binary Tree 

(implemented as an array) 

that has the heap-order 

property.

In a binary heap, where do we find
•The smallest element?
•2nd smallest?
•3rd smallest?
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Figure 21.7
Attempt to insert 14, creating the hole and bubbling the hole up
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Create a "hole" where 14 can be inserted.

Recall that the 
actual data 
movement is 
simply done by 
array 
manipulation

Figure 21.8
The remaining two steps required to insert 14 in the original heap 
shown in Figure 21.7
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Analysis of 

insertion

Your turn: Insert into an initially empty heap:   
6 4 8 1 5 3 2 7
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Figure 21.10    Creation of the hole at the root
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The min is at the root.  Delete it, then use the percolateDown

algorithm to find the correct place for its replacement.

We must decide which child to promote,  to make room for 31.
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Figure 21.11
The next two steps in the deleteMin operation
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Figure 21.12
The last two steps in the deleteMin operation
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Compare node to its children, 

moving root down and 

promoting the smaller child until 

proper place is found. 

Analysis

� Worst case times:
◦ findMin:  O(1)
◦ insert: O(log n)
◦ deleteMin O(log n)

� big-oh times for insert/delete are the same 
as the balanced BST implementation, 
◦ but these operations are much simpler, 
◦ and don’t require space for pointers.
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� Start with empty heap

� Insert each array element into heap
� Repeatedly do deleteMin, copying elements back 

into array.

� http://nova.umuc.edu/~jarc/idsv/lesson3.html
◦ Can be run in demo mode or practice mode.

� We can save space by doing the whole sort in 
place, using a "maxHeap" (i.e. a heap where the 
maximum element is at the root instead of the 
minimum)

� Analysis?
◦ Next slide …Next slide …Next slide …Next slide …

� Add the elements to the heap
◦ Repeatedly call insert

� Remove the elements and place into the array
◦ Repeatedly call DeleteMin

� We can do better for the insertion part by 
using BuildHeap
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BuildHeap takes a complete tree that is not a heap and 

exhanges elements to get it into heap form

At each stage it takes a root plus two heaps and  "percolates 

down" the root to restore "heapness" to the entire subtree

Why this starting point?

Figure 21.17  Implementation of the linear-time buildHeap method

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss      © 2002  Addison Wesley



6/7/2010

9

Figure 21.18
(a) After percolateDown(6); 
(b) after percolateDown(5)
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Figure 21.19
(a) After percolateDown(4); 
(b) after percolateDown(3)
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Figure 21.20

(a)After percolateDown(2); 
(b) after percolateDown(1) and buildHeap terminates
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� Find a summation that represents the 
maximum number of comparisons required 
to rearrange an array into a heap

� Evaluate the sum

� This was part of WA10

◦ The summation is 

and the sum is N – H + 1
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Collision Resolution

� How is the data stored?

� How are the hash code and array capacity 
used?

� What is a collision?

� How do we attempt to avoid collisions?

� Why can we seldom guarantee that there will 
be no collisions?
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� When an item hashes to a table location 
occupied by a non-equal item, simply use the 
next available space.  

� Try H+1, H+2, H+3, …
◦ With wraparound at the end of the array

� Problem: Clustering (picture on next slide)

� http://www.cs.auckland.ac.nz/software/AlgA
nim/hash_tables.html

� We’ll let it keep running while we look at 
analysis.

Figure 20.4
Linear probing hash 
table after each 
insertion
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� Dependent on the load factorload factorload factorload factor, λ, which is the ratio of the number 
of items in the table to the size of the table.  Thus 0 ≤ λ ≤ 1.

� For a given  λ, what is the expected number of probes before an 
empty location is found?

� For simplicity, assume that all locations are equally likely to be 
occupied, and equally likely to be the next one we look at.  Then 
the probability that a given cell is empty is 1 - λ, and thus the 
expected number of probes before finding an empty cell is (write 
it as a summation).

|
� For example, if λ is 0.75, the expected value is 4.

� The "equally likely" probability is not realistic, because of 
clusteringclusteringclusteringclustering

� Large blocks of consecutive occupied cells are formed.  Any 
attempt to place a new item in any of those cells results in 
extending the cluster by at least one item

� Thus items collide not only because of identical hash values, but 
also because of hash values that happen to put them into the 
cluster

� Average number of probes when λ is large:
◦ 0.5 [ 1 + 1/(1- λ)2 ].

� For a proof, see Knuth, The Art of Computer Programming, Vol 3: Searching 
Sorting, 2nd ed, Addision-Wesley, Reading, MA, 1998.

◦ What are the values for λ = 0, 0.5, 0.75, 0.9?

◦ When When When When λλλλ approaches 1, this gets bad!approaches 1, this gets bad!approaches 1, this gets bad!approaches 1, this gets bad!

◦ But if λ is close to zero, then the average is near 1.0
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� Easy to implement

� Simple code has fast run time per probe

� Works well when load is low
◦ It could be more efficient just to rehash using a bigger 

table once it starts to fill.

◦ Typically done in practice: rehash to an array that is 
double in size once the load goes over 0.5

� What about other fast, easy-to-implement 
strategies?

� With linear probing, if there is a collision at H, 
we try H, H+1, H+2, H+3,... until we find an 
empty spot.  
◦ Causes (primary) clustering

� With quadratic probing, we try H, H+12. 
H+22, H+32,...  
◦ Eliminates primary clustering, but can cause 

secondary clustering.
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� Choose a prime number for the array sizeChoose a prime number for the array sizeChoose a prime number for the array sizeChoose a prime number for the array size
◦ Guaranteed insertion and no cell is probed twice, provided 

That the table is no more than half full.

◦ Suppose the array size is P, a prime number greater than 3

◦ Show by contradiction that if i and j are ≤QP/2R, and i≠j, 
then H + i2 (mod P) T H + j2 (mod P).

� Use Use Use Use an algebraic an algebraic an algebraic an algebraic trick to calculate next trick to calculate next trick to calculate next trick to calculate next indexindexindexindex
◦ Replaces mod and general multiplication with subtraction 

and a bit shift

◦ Difference between successive probes:

� H + (i+1)2 = H + i2 + ( 2i+1)  [can use bit-shift for multiplication].

� nextProbe = nextProbe + (2i+1); 
if (nextProbe >= P) nextProbe -= P;     


