
6/7/2010

1

6/7/2010

2

� Let's write some of the code
� Demo (view later)
◦ http://pages.stern.nyu.edu/~panos/java/Quicksort/

� Running time for partitionpartitionpartitionpartition of N elementsof N elementsof N elementsof N elements?
� Quicksort Running time:
◦ call partition. Get two subarrays of sizes NL and NR
(what is the relationship between NL, NR, and N?)
◦ Then Quicksort the smaller parts
◦ T(N) = N + T(NL) + T(NR)

� Quicksort Best case: write and solve the recurrence
� Quicksort Worst case: write and solve the
recurrence

� average: a little bit trickier
◦ We have to be careful how we measure

� Let T(N) be the average # of comparisons of
array elements needed to quicksort N
elements.

� What is T(0)? T(1)?

� Otherwise T(N) is the sum of
◦ time for partition

◦ average time to quicksort left part: T(NL)

◦ average time to quicksort right part: T(NR)

� T(N) = N + T(NL) + T(NR)

6/7/2010

3

� What if we picked as the partitioning element the
smallest element half of the time and the largest
half of the time?

� Then on the average, NL = N/2 and NR =N/2,
◦ but that doesn’t give a true picture of this worst-case
scenario.
◦ In every case, either NL = N-1 or NR =N-1

� Instead we need to figure it out for each case, and
average all of the cases

� We always need to make some kind of “distribution”
assumptions when we figure out Average case

� When we execute
k = partition(pivot, i, j),

all positions i..j are equally likely places for the pivot to end
up

� Thus NL is equally likely to have each of the
values 0, 1, 2, … N-1

� NL+NR = N-1; thus NR is also equally likely to have each of the
values 0, 1, 2, … N-1

� Thus T(NL)= T(NR) =

6/7/2010

4

� T(N) =

� Multiply both sides by N

� Rewrite, substituting N-1 for N

� Subtract the equations and forget the insignificant
(in terms of big-oh) -1:
◦ NT(N) = (N+1)T(N-1) + 2N

� Now we have an equation that expresses T(N) in
terms of a similar formula involving T(N-1), so we
can telescope

� NT(N) = (N+1)T(N-1) + 2N

� Divide both sides by N(N+1)

� Write formulas for T(N), T(N-1),T(N-2) …T(2).

� Add the terms and rearrange.

� Notice the familiar series

� Multiply both sides by N+1.

6/7/2010

5

� Avoid the worst case
◦ Select pivot from the middle

◦ Randomly select pivot

◦ Median of 3 pivot selection.

◦ Median of k pivot selection

� "Switch over" to a simpler sorting method
(insertion) when the subarray size gets small.

public static <AnyType extends Comparable<? super AnyType>>

void quicksort(AnyType [] a){

quicksort(a, 0, a.length - 1);

}

private static final int CUTOFF = 10;

public static final <AnyType> void

swapReferences(AnyType [] a, int index1, int index2) {

AnyType tmp = a[index1];

a[index1] = a[index2];

a[index2] = tmp;

}

6/7/2010

6

private static <AnyType extends Comparable<? super AnyType>> void

quicksort(AnyType [] a, int low, int high) {

if(low + CUTOFF > high)

insertionSort(a, low, high);

else {

// Sort low, middle, high

int middle = (low + high) / 2;

if(a[middle].compareTo(a[low]) < 0)

swapReferences(a, low, middle);

if(a[high].compareTo(a[low]) < 0)

swapReferences(a, low, high);

if(a[high].compareTo(a[middle]) < 0)

swapReferences(a, middle, high);

// Place pivot at position high - 1

swapReferences(a, middle, high - 1);

AnyType pivot = a[high - 1];

// Begin partitioning

// Begin partitioning

int i, j;

for(i = low, j = high - 1; ;) {

while(a[++i].compareTo(pivot) < 0)

;

while(pivot.compareTo(a[--j]) < 0)

;

if(i >= j)

break;

swapReferences(a, i, j);

}

// Restore pivot

swapReferences(a, i, high - 1);

quicksort(a, low, i - 1); // Sort small elements

quicksort(a, i + 1, high); // Sort large elements

}

}

6/7/2010

7

� http://maven.smith.edu/~thiebaut/java/sort/
demo.html

� http://www.cs.ubc.ca/~harrison/Java/sorting
-demo.html

� This gives the average time for finding an
element in the BST.

� Do average internal path length (IPL).

� Average depth is (1/N)(Average IPL).

6/7/2010

8

� Let D(N) be the average IPL of a BST with N nodes.

� If i nodes in left subtree, then N-i-1 in right
subtree.

� If i nodes in left subtree, then average contribution
of those nodes to IPL of whole tree is D(i) + i.
Similarly right subtree contributes D(N-i-1)+ N-i-1.

� D(N) = (2/N) sum(D(i)) + N-1

� Same recurrence as average case of Quicksort, so
same O(N log N) solution.

� Conclusion: Average search time in random BST is
O(log N).

Basic operations
Implementation options

Binary Heaps

6/7/2010

9

� Each element I the PQ has an associated
prioritypriorityprioritypriority, which is a non-negative integer.

� findMin()

� insert(item, priority)

� deleteMin()

� How could we implement it using data structures
that we already know about?
◦ Array?
◦ Queue?
◦ List?
◦ BinarySearchTree?

� One efficient approach uses a binary heap
◦ A somewhat-sorted complete binary tree.

� Questions we'll ask:
◦ How can we efficiently represent a complete binary tree?
◦ Can we add and remove items efficiently without
destroying the "heapness" of the structure?

6/7/2010

10

Figure 21.1
A complete binary tree and its array representation

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

How to find the children

or the parent of a node?

Notice the

lack of

explicit

pointers

“complete”
is not a
completely
standard
term

One
wasted
array
position

Figure 21.2
Heap-order property

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

A Binary Heap is a

complete Binary Tree

(implemented as an array)

that has the heap-order

property.

In a binary heap, where do we find
•The smallest element?
•2nd smallest?
•3rd smallest?

6/7/2010

11

Figure 21.7
Attempt to insert 14, creating the hole and bubbling the hole up

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Create a "hole" where 14 can be inserted.

Recall that the
actual data
movement is
simply done by
array
manipulation

Figure 21.8
The remaining two steps required to insert 14 in the original heap
shown in Figure 21.7

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Analysis of

insertion

Your turn: Insert into an initially empty heap:
6 4 8 1 5 3 2 7

6/7/2010

12

Figure 21.10 Creation of the hole at the root

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

The min is at the root. Delete it, then use the percolateDown

algorithm to find the correct place for its replacement.

We must decide which child to promote, to make room for 31.

6/7/2010

13

Figure 21.11
The next two steps in the deleteMin operation

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 21.12
The last two steps in the deleteMin operation

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

