Recap: A useful mathematical fact

logb y lOgb X

X =Yy

We really will use it today!

P

The Master Theorem for
Divide-and-Conquer
Recurrence Relations

Derive the resultd

6/7/2010

» Solution:

/.=

-

\

Technique 4: catalog some general
equations and their solutions

» General Divide and Conquer Example:

» f, = Af, g+ h(n), where h(n) is O(n"),

and where A>1 and B>1

0%””) if A>B*

Oln*logn) if A=B*
oln*) if A<B*

On to the derivation of this solution...

this solution?

does not hurt!

£§§§f

Why will we do this long derivation of

» We’ll use the result a few times

» The derivation will reinforce a technique
(telescoping) that works for solving many
other recurrence relations

» Some of the detailed steps are the kinds of
things you’ll be doing again, and repetition

6/7/2010

Proof of a special case of this general
divide-and-conquer recurrence relation

14 fn = Afn/B+ h(n), logy A . .
where h(n) is O(n¥) , O(n) if A>B

and A>1and B>1 |f =10l'logn) if A=B*
» Solution: —— on*) if A<B*

» Special case:
- Assume that n is a power of B (n=BM), that f,=1, and
ignore the constant factor in O(nk):
[i.e., use h(n) = nk]
» The recurrence relation becomes

f.=4 f, +BY

Continue the derivation

» From last slide: f =A f + B™
BM BM—I
» Divide both sides by A™: kY
fo f(B]
AM AM—l A
» Replace M by other ([B* a
numbers: {5”1[' = f;;”iﬁ e

» Add the terms, see some
disappear, simplify.

6/7/2010

6/7/2010

Continue the derivation

» Simplify to get

fo=fo=a"3()

i=0

» If A > BK OGfmA) if A> B
fA=B | f =10(n"logn) if A=B"
» If A < Bk OQk) if A<B*

Use this to analyze a few algorithms

» f, = Af, g+ h(n), where h(n) is O(n¥),
and where A>1 and B>1

» Solution:

0%““) if A>B*
={0Wn"logn) if A=B"

f,=100" log n)
o(n*) if A<B*

Analyze binary search, merge sort, max subsequence
sum, binary search of an unsorted array.

6/7/2010

Sorting

Sorting Outline

» Sorting overview
» Review of elementary sorts

» Lower bound for the worst case of
comparison-based sorting algorithms

» Non-comparison-based sorting algorithms
» Quicksort and its analysis

P

Sorting is ubiquitous

» In the classic book series The Art of
Computer Programming, Donald Knuth
devoted a whole volume (about 700 pages) to
sorting and searching

» He claimed that about 70% of all CPU time is
spent on these two activities

“Sorting” is a funny word for this

concept!

» Not quite like normal English usage
» Is there a normal English usage?

» From Knuth:
- He was sort of out of sorts from sorting that sort of
data.
» Could “ordering” be a better word?
» Knuth again:
> My boss ordered me to order [more memory] so

that we could order our data several orders of
magnitude faster

> Actually in Knuth’s (dated) statement, it was “tape
drive” instead of “more memory”

6/7/2010

6/7/2010

Elementary Sorting Methods

» Name several of them
» How does each work?
» Running time for each (sorting N items)?
> best
° worst
° average
o Extra space requirements
» Spend 10 minutes with a group of three, answering
these questions. Then we will summarize

Elementary Sorting Methods

» Some possible answers (Collect them on the board)
> Bubble sort (Don't say the b-word!)
> Insertion sort Like sorting files in manila folders
> Selection sort Select the largest, then the second largest, ...
> Merge sort Split, recursively sort, merge
> Binary tree sort Insert all into BST, then inOrder traversal
> (Quicksort) Not so elementary. We’ll do it in detail

- http://students.ceid.upatras.gr/~pirot/java/Quicksort/

> (Heapsort) Wwe’ll also do this one in detail
> (Shellsort) Interesting variation on insertion sort
> (Radix sort) Another one that we’ll consider in some detail

Best, worst, average time?
Extra space requirements?

A Lower Bound for Sorting
Algorithms’ Worst-case Run Time

» Lower bound for best case?

> A particular algorithm that achieves this?
» Lower bound for worst case

> This is the one we really care about

> It’s tricky:

- We want to be able to find a function f(N) such
that the worst case running time for all sorting
algorithms is Q(f(N))

- The problem is, how do we get a handle on “all
sorting algorithms”?

Lower bound for sorting
algorithms running time

» The problem is, how do we get a handle on
all sorting algorithms?

» We can’t list all sorting algorithms and
analyze all of them
> Why not?

» But we can find a uniform representation of
any sorting algorithm that is based on
comparing elements of the array to each

other This "uniform representation”

idea is exploited in a big way
in Theory of Computation, to
demonstrate the unsolvability
of the "Halting Problem"

6/7/2010

First of all...

» The problem of sorting N elements is at least
as hard as determining their ordering
- e.g., determiningthatas; <a, <a; <as<a,

» So any lower bound on all "order-
determination” algorithms is also a lower
bound on "all sorting algorithms”

Sort Decision Trees

» Let A be any comparison-based algorithm for sorting an array
of distinct elements
> What do we mean by comparison-based?

» Note that sorting is asymptotically equivalent to determining
the correct order of the originals. Because once we have
determined the correct order, a linear algorithm will do the
actual sorting

» For any given N, we can draw an EBT that corresponds to the
comparisons that will be used by A to sort an array of N
elements
> [This is just an on-paper EBT. Not a data structure to implement]
> Do it for three elements and selection sort
> Clearly, different algorithms will have different trees

» The worst-case number of comparisons for Ais the _______ of

the Sort Decision Tree

6/7/2010

