Recap: A useful mathematical fact

$$
x^{\log _{b} y}=y^{\log _{b} x}
$$

We really will use it today!

The Master Theorem for Divide-and-Conquer Recurrence Relations

Derive the resultd

Technique 4: catalog some general equations and their solutions

- General Divide and Conquer Example:
- $f_{n}=A f_{n / B}+h(n)$, where $h(n)$ is $O\left(n^{k}\right)$, and where $A \geq 1$ and $B>1$
- Solution:

$$
f_{n}=\left\{\begin{array}{cll}
O\left(n^{\log _{B} A}\right) & \text { if } & A>B^{k} \\
O\left(n^{k} \log n\right) & \text { if } & A=B^{k} \\
O\left(n^{k}\right) & \text { if } & A<B^{k}
\end{array}\right.
$$

On to the derivation of this solution...

Why will we do this long derivation of this solution?

- We'll use the result a few times
- The derivation will reinforce a technique (telescoping) that works for solving many other recurrence relations
- Some of the detailed steps are the kinds of things you'll be doing again, and repetition does not hurt!

Proof of a special case of this general

 divide-and-conquer recurrence relation- $f_{n}=A f_{n / B}+h(n)$, where $h(n)$ is $O\left(n^{k}\right)$, and $A \geq 1$ and $B>1$
- Solution:

$$
f_{n}=\left\{\begin{array}{cll}
O\left(n^{\log _{B} A}\right) & \text { if } & A>B^{k} \\
O\left(n^{k} \log n\right) & \text { if } & A=B^{k} \\
O\left(n^{k}\right) & \text { if } & A<B^{k}
\end{array}\right.
$$

- Special case:
- Assume that n is a power of $B\left(n=B^{M}\right)$, that $f_{1}=1$, and ignore the constant factor in $O\left(n^{k}\right)$:
[i.e., use $h(n)=n^{k}$]
- The recurrence relation becomes

$$
f_{B^{M}}=A \quad f_{B^{M-1}}+B^{k M}
$$

Continue the derivation

- From last slide:

$$
\begin{aligned}
& f_{B^{M}}=A \quad f_{B^{M-1}}+B^{k M} \\
& \frac{f_{B^{u}}}{A^{M}}=\frac{f_{B^{M-1}}}{A^{M-1}}+\left(\frac{B^{k}}{A}\right)^{M}
\end{aligned}
$$

- Divide both sides by A^{m} :
- Replace M by other numbers:

$$
\begin{aligned}
& \frac{f_{B^{u-1}}}{A^{B-1}}=\frac{f_{B^{u-2}}}{A^{B-2}}+\left(\frac{B^{k}}{A}\right)^{M-1} \\
& \frac{f_{B^{\prime}}}{A^{1}}=\frac{f_{B^{0}}}{A^{0}}+\left(\frac{B^{k}}{A}\right)^{1}
\end{aligned}
$$

- Add the terms, see some disappear, simplify.

Continue the derivation

- Simplify to get

$$
f_{n}=f_{B^{M}}=A^{M} \sum_{i=0}^{M}\left(\frac{B^{k}}{A}\right)^{i}
$$

- If $A>B^{k}$
- If $A=B^{k}$
- If $A<B^{k}$

$$
f_{n}=\left\{\begin{array}{clc}
O\left(n^{\log _{B} A}\right) & \text { if } & A>B^{k} \\
O\left(n^{k} \log n\right) & \text { if } & A=B^{k} \\
O\left(n^{k}\right) & \text { if } & A<B^{k}
\end{array}\right.
$$

Use this to analyze a few algorithms

- $f_{n}=A f_{n / B}+h(n)$, where $h(n)$ is $O\left(n^{k}\right)$, and where $A \geq 1$ and $B>1$
- Solution:

$$
f_{n}=\left\{\begin{array}{cll}
O\left(n^{\log _{B} A}\right) & \text { if } & A>B^{k} \\
O\left(n^{k} \log n\right) & \text { if } & A=B^{k} \\
O\left(n^{k}\right) & \text { if } & A<B^{k}
\end{array}\right.
$$

Analyze binary search, merge sort, max subsequence sum, binary search of an unsorted array.

Sorting

Sorting Outline

- Sorting overview
- Review of elementary sorts
- Lower bound for the worst case of comparison-based sorting algorithms
- Non-comparison-based sorting algorithms
- Quicksort and its analysis

Sorting is ubiquitous

- In the classic book series The Art of Computer Programming, Donald Knuth devoted a whole volume (about 700 pages) to sorting and searching
- He claimed that about 70\% of all CPU time is spent on these two activities

"Sorting" is a funny word for this concept!

- Not quite like normal English usage
- Is there a normal English usage?
, From Knuth:
- He was sort of out of sorts from sorting that sort of data.
- Could "ordering" be a better word?
- Knuth again:
- My boss ordered me to order [more memory] so that we could order our data several orders of magnitude faster
Actually in Knuth's (dated) statement, it was "tape drive" instead of "more memory"

Elementary Sorting Methods

- Name several of them
- How does each work?
- Running time for each (sorting N items)?
- best
- worst
- average
- Extra space requirements
- Spend 10 minutes with a group of three, answering these questions. Then we will summarize

Elementary Sorting Methods

- Some possible answers (Collect them on the board)
- Bubble sort
(Don't say the b-word!)
- Insertion sort

Like sorting files in manila folders

- Selection sort Select the largest, then the second largest, ...
- Merge sort
- Binary tree sort Split, recursively sort, merge
- (Quicksort) Insert all into BST, then inOrder traversal - http://students.ceid.upatras.gr/~pirot/java/Quicksort/
- (Heapsort) We'll also do this one in detail
- (Shellsort) Interesting variation on insertion sort
- (Radix sort) Another one that we'll consider in some detail

Best, worst, average time?
Extra space requirements?

A Lower Bound for Sorting Algorithms' Worst-case Run Time

- Lower bound for best case?

A particular algorithm that achieves this?

- Lower bound for worst case
- This is the one we really care about
- It's tricky:
- We want to be able to find a function $f(N)$ such that the worst case running time for all sorting algorithms is $\Omega(\mathrm{f}(\mathrm{N}))$
- The problem is, how do we get a handle on "all sorting algorithms"?

Lower bound for sorting algorithms running time

- The problem is, how do we get a handle on all sorting algorithms?
- We can't list all sorting algorithms and analyze all of them
- Why not?
- But we can find a uniform representation of any sorting algorithm that is based on comparing elements of the array to each other

This "uniform representation" idea is exploited in a big way in Theory of Computation, to demonstrate the unsolvability of the "Halting Problem"

First of all...

- The problem of sorting N elements is at least as hard as determining their ordering
e.g., determining that $a_{3}<a_{4}<a_{1}<a_{5}<a_{2}$
- So any lower bound on all "orderdetermination" algorithms is also a lower bound on "all sorting algorithms"

Sort Decision Trees

- Let A be any comparison-based algorithm for sorting an array of distinct elements
What do we mean by comparison-based?
- Note that sorting is asymptotically equivalent to determining the correct order of the originals. Because once we have determined the correct order, a linear algorithm will do the actual sorting
- For any given N, we can draw an EBT that corresponds to the comparisons that will be used by A to sort an array of N elements
[This is just an on-paper EBT. Not a data structure to implement]
Do it for three elements and selection sort
Clearly, different algorithms will have different trees
- The worst-case number of comparisons for A is the \qquad of the Sort Decision Tree

