
6/7/2010

1

yx
xy bb

loglog
=

We really will use it today!

Derive the resultd

6/7/2010

2

� General Divide and Conquer Example: General Divide and Conquer Example: General Divide and Conquer Example: General Divide and Conquer Example:

� fn = Afn/B+ h(n), where h(n) is O(n
k),

and where A≥1 and B>1

� Solution:Solution:Solution:Solution: ()
()

()

<

=

>

=
kk

kk

kA

n

BAifnO

BAifnnO

BAifO n
f

B

log

log

On to the derivation of this solution…On to the derivation of this solution…On to the derivation of this solution…On to the derivation of this solution…

� We’ll use the result a few times

� The derivation will reinforce a technique
(telescoping) that works for solving many
other recurrence relations

� Some of the detailed steps are the kinds of
things you’ll be doing again, and repetition
does not hurt!

6/7/2010

3

� ffffnnnn = = = = AfAfAfAfnnnn/B/B/B/B+ h(n)+ h(n)+ h(n)+ h(n),
where h(n) is O(nk) ,
and A≥1 and B>1

� Solution:

� Special case:
◦ Assume that n is a power of B (n=BM), that f1=1, and
ignore the constant factor in O(nk):
[i.e., use h(n) = nk]

� The recurrence relation becomes

()
()

()

<

=

>

=
kk

kk

kA

n

BAifnO

BAifnnO

BAifO n
f

B

log

log

kM

BB
BA ff MM

+=
−1

� From last slide:

� Divide both sides by Am:

� Replace M by other
numbers:

� Add the terms, see some
disappear, simplify.

kM

BB
BA ff MM

+=
−1

+=

−

−

A

Bff
k

AA

M

M

B

M

B MM

1

1

−

−−
+=

−−

A

Bff
k

AA

M

M

B

M

B
MM

1

21

21

+=

A

Bff
k

AA

BB

1

01

01

6/7/2010

4

� Simplify to get

� If A > Bk

� If A = Bk

� If A < Bk

()∑
=

==
M

i
A

k
B

iM

Bn Aff M

0

()
()

()

<

=

>

=
kk

kk

kA

n

BAifnO

BAifnnO

BAifO n
f

B

log

log

� fn = Afn/B+ h(n), where h(n) is O(n
k),

and where A≥1 and B>1

� Solution:Solution:Solution:Solution:

()
()

()

<

=

>

=
kk

kk

kA

n

BAifnO

BAifnnO

BAifO n
f

B

log

log

Analyze binary search, merge sort, max subsequence
sum, binary search of an unsorted array.

6/7/2010

5

� Sorting overview

� Review of elementary sorts

� Lower bound for the worst case of
comparison-based sorting algorithms

� Non-comparison-based sorting algorithms

� Quicksort and its analysis

6/7/2010

6

� In the classic book series The Art of The Art of The Art of The Art of
Computer ProgrammingComputer ProgrammingComputer ProgrammingComputer Programming, Donald Knuth
devoted a whole volume (about 700 pages) to
sorting and searching

� He claimed that about 70% of all CPU time is
spent on these two activities

� Not quite like normal English usage
� Is there a normal English usage?
� From Knuth:
◦ He was sortsortsortsort of out of sortsortsortsortssss from sortingsortingsortingsorting that sortsortsortsort of
data.

� Could “ordering” be a better word?
� Knuth again:
◦ My boss orderorderorderordered me to orderorderorderorder [more memory] so
that we could orderorderorderorder our data several orderorderorderorders of
magnitude faster
◦ Actually in Knuth’s (dated) statement, it was “tape
drive” instead of “more memory”

6/7/2010

7

� Name several of them

� How does each work?

� Running time for each (sorting N items)?
◦ best

◦ worst

◦ average

◦ Extra space requirements

� Spend 10 minutes with a group of three, answering
these questions. Then we will summarize

� Some possible answers (Collect them on the board)(Collect them on the board)(Collect them on the board)(Collect them on the board)

◦ Bubble sort ((((Don't say the bDon't say the bDon't say the bDon't say the b----word!)word!)word!)word!)

◦ Insertion sort Like Like Like Like sorting files in manila sorting files in manila sorting files in manila sorting files in manila foldersfoldersfoldersfolders

◦ Selection sort Select the largestSelect the largestSelect the largestSelect the largest, then , then , then , then the second the second the second the second largest, …largest, …largest, …largest, …

◦ Merge sort SplitSplitSplitSplit, recursively sort, , recursively sort, , recursively sort, , recursively sort, mergemergemergemerge

◦ Binary tree sort Insert Insert Insert Insert all into BST, then all into BST, then all into BST, then all into BST, then inOrder traversalinOrder traversalinOrder traversalinOrder traversal

◦ (Quicksort) Not Not Not Not so elementary. We’ll do it in so elementary. We’ll do it in so elementary. We’ll do it in so elementary. We’ll do it in detaildetaildetaildetail

� http://students.ceid.upatras.gr/~pirot/java/Quicksort/

◦ (Heapsort) We’ll We’ll We’ll We’ll also do this one in also do this one in also do this one in also do this one in detaildetaildetaildetail

◦ (Shellsort) Interesting variation Interesting variation Interesting variation Interesting variation on insertion on insertion on insertion on insertion sortsortsortsort

◦ (Radix sort) Another Another Another Another one thatone thatone thatone that we’ll consider in some we’ll consider in some we’ll consider in some we’ll consider in some detaildetaildetaildetail

◦

Best, worst, average time?
Extra space requirements?

6/7/2010

8

� Lower bound for best case?
◦ A particular algorithm that achieves this?

� Lower bound for worst case
◦ This is the one we really care about

◦ It’s tricky:

� We want to be able to find a function f(N)f(N)f(N)f(N) such
that the worst case running time for allallallall sorting
algorithms is Ω(f(N))

� The problem is, how do we get a handle on “all
sorting algorithms”?

� The problem is, how do we get a handle on
allallallall sorting algorithms?

� We can’t list all sorting algorithms and
analyze all of them
◦ Why not?

� But we can find a uniformuniformuniformuniform representationrepresentationrepresentationrepresentation of
any sorting algorithm that is based on
comparingcomparingcomparingcomparing elements of the array to each
other This "uniform representation"

idea is exploited in a big way
in Theory of Computation, to
demonstrate the unsolvability
of the "Halting Problem"

6/7/2010

9

� The problem of sorting N elements is at least
as hard as determining their ordering
◦ e.g., determining that a3 < a4 < a1 < a5 < a2

� So any lower bound on all "order-
determination" algorithms is also a lower
bound on "all sorting algorithms"

� Let A be any comparison-based algorithm for sorting an array

of distinct elements

◦ What do we mean by comparison-based?

� Note that sorting is asymptotically equivalent to determining

the correct order of the originals. Because once we have

determined the correct order, a linear algorithm will do the

actual sorting

� For any given N, we can draw an EBT that corresponds to the

comparisons that will be used by A to sort an array of N

elements

◦ [This is just an on-paper EBT. Not a data structure to implement]

◦ Do it for three elements and selection sort

◦ Clearly, different algorithms will have different trees

� The worst-case number of comparisons for A is the _______ of

the Sort Decision Tree

