More about Recurrence Relations

Four solution techniques

Recap: A useful mathematical fact

$$
x^{\log _{b} y}=y^{\log _{b} x}
$$

Can you see why this is true for all positive values of x, y, and b ?

Recurrence relation basics

- What does the solution of a recurrence relation describe?
a (usually infinite) sequence
- how is this like solving a D.E.?
- What is the form of a recurrence relation?

1. initial value(s): value for c_{0}, or perhaps $\mathrm{c}_{0}, \mathrm{c}_{1}, \ldots \mathrm{c}_{\mathrm{k}}$ for some fixed number k
2. a general formula that relates c_{n} to one or more earlier values in the sequence

Solving recurrence relations

Technique 1: ad hoc methods

- Recognize a pattern.

That's pretty much what we did in the previous examples.

Another Example:

Write and analyze selection sort

- Code
o void sort (int [] a)
- Analysis:
- Write a recurrence relation
- solve it

Technique 2: iteration

- Example: $\mathrm{f}_{1}=1, \mathrm{f}_{\mathrm{n}}=\mathrm{n}+\mathrm{f}_{\mathrm{n} / 2}$, where n is a power of 2 (i.e., $\mathrm{n}=2^{\mathrm{k}}$ for some k)
- Iterate some terms to see the pattern
- What if n is not a power of 2 ?
- It is still true that f_{n} is $\Theta(n)$
- Details are too complex for this course
- Take CSSE 473

Interlude

The GOTO statement is the seed from which all other iteration statements have been germinated
Unfortunately, it is a semolina seed, producer of spaghetti code and endless confusion -- Jesse Liberty: Programming C\#, 2nd edition, page 43

Technique 3: telescoping

- From the recursive max contiguous subsequence sum algorithm:
- $\mathrm{f}_{1}=1, \mathrm{f}_{\mathrm{n}}=2 \mathrm{f}_{\mathrm{n} / 2}+\mathrm{n}$, where n is a power of $2 .\left(\mathrm{n}=2^{\mathrm{k}}\right)$
- Divide both sides by n to get

$$
\frac{f_{n}}{n}=\frac{f_{n / 2}}{n / 2}+1
$$

- Substitute $\mathrm{n} / 2, \mathrm{n} / 4, \ldots, 2$ for n to get several equations.
- Add the left and right sides of the equations
- Notice the terms that cancel
- Simplify and plug in the initial value
- Result: $f_{n}=n \log n+n$

Technique 4: catalog some general equations and their solutions

- General Divide and Conquer Example:
- $f_{n}=A f_{n / B}+h(n)$, where $h(n)$ is $O\left(n^{k}\right)$, and where $A \geq 1$ and $B>1$
- Solution:
$f_{n}=\left\{\begin{array}{cll}O\left(n^{\log _{B} A}\right) & \text { if } & A>B^{k} \\ O\left(n^{k} \log n\right) & \text { if } & A=B^{k} \\ O\left(n^{k}\right) & \text { if } & A<B^{k}\end{array}\right.$

Soon we will show that this is true

Famous Diversion - Towers of Hanoi (a relevant interlude)

- The Towers of Hanoi puzzle was invented by the French mathematician Edouard Lucas in 1883.
- We are given a tower of disks initially stacked in decreasing size on one of three pegs
- The objective is to transfer the entire tower to one of the other pegs,
- moving only one disk at a time and
- never placing a larger disk on top of a smaller disk

Towers of Hanoi - (my)hands on

 Demo!Towers of Hanoi

- Write the method (and its recursive helper)
- Analyze it: count the total moves required to move n disks from one peg to another
- I.e., write and solve the recurrence relation

Technique 4: catalog some general equations and their solutions

- General Divide and Conquer Example:
- $f_{n}=A f_{n / B}+h(n)$, where $h(n)$ is $O\left(n^{k}\right)$, and where $A \geq 1$ and $B>1$
- Solution:

$$
f_{n}=\left\{\begin{array}{ccc}
O\left(n^{\log _{B} A}\right) & \text { if } & A>B^{k} \\
O\left(n^{k} \log n\right) & \text { if } & A=B^{k} \\
O\left(n^{k}\right) & \text { if } & A<B^{k}
\end{array}\right.
$$

Why will we do this long derivation of this solution?

- We'll use the result a few times
- Helps you understand a technique (telescoping) that works for solving many other recurrence relations
- Some of the detailed steps are the kinds of things you'll be doing again, and repetition does not hurt!

Proof of a special case of this general divide-and-conquer recurrence relation

- $f_{n}=A f_{n / B}+h(n)$, where $h(n)$ is $O\left(n^{k}\right)$, $A \geq 1$ and $B>1$.
- Solution:

$$
f_{n}=\left\{\begin{array}{cll}
O\left(n^{\log _{B} A}\right) & \text { if } & A>B^{k} \\
O\left(n^{k} \log n\right) & \text { if } & A=B^{k} \\
O\left(n^{k}\right) & \text { if } & A<B^{k}
\end{array}\right.
$$

- Special case:
- Assume that n is a power of $\mathrm{B}\left(\mathrm{n}=\mathrm{B}^{M}\right)$, that $\mathrm{f}_{1}=1$, and ignore the constant factor in $O\left(n^{k}\right)$:
[i.e., use $h(n)=n^{k}$]
- The recurrence relation becomes

$$
f_{B^{M}}=A \quad f_{B^{M-1}}+B^{k M}
$$

