
6/7/2010

1

Insertion, deletion, rebalancing…

…all in O(log N) time

� An AVL tree is
1. height-balanced
2. a Binary search tree

� We saw that the maximum height of an AVL tree
with N nodes is O(log n).

� We want to show that after an insertion or deletion
(also O(log n) since the height is O(log n)also O(log n) since the height is O(log n)also O(log n) since the height is O(log n)also O(log n) since the height is O(log n)),
we can rebalance the tree in O(log n) time.
◦ If that is true, then find, insert, and remove, will all be

O(Log N).
� An extra field is needed in each node in order to

achieve this speed. Values: / = / = / = / = \\\\
We call this field the balance codebalance codebalance codebalance code.

� The balance code could be represented by only two
bits.

6/7/2010

2

� Assume that the tree is height-balanced before the
insertion.

� Start at the inserted node (always a leaf).

� Move back up the tree to the firstfirstfirstfirst (lowest) node (if any)
where the heights of its subtrees now differ by more
than one.
◦ We’ll call that node AAAA in our diagrams.

� Do the appropriate single or double rotation to balance
the subtree whose root is at this node.

� If a rotation is needed, we will see that the combination
of the insertion and rotation leaves this subtree with the
same height that it had before insertion.

Depends on the first two links in the path from
the node with the imbalance (A) down to the
newly-inserted node.

First link

(down from A)

Second link

(down from A's

child)

Rotation type

(rotate "around

A's position")

Left Left Single right

Left Right Double right

Right Right Single left

Right Left Double left

6/7/2010

3

Diagrams are from Data Structures by E.M. Reingold

and W.J. Hansen.

� Write the method:
� BalancedBinaryNode singleRotateLeft (

BalancedBinaryNode parent, /* A */
BalancedBinaryNode child /* B */) {

}
� Returns a reference to the new root of this subtree.
� Don’t forget to set the balanceCode fields of the nodes.

6/7/2010

4

� Write the method:
� BalancedBinaryNode doubleRotateLeft (

BalancedBinaryNode parent, /* A */
BalancedBinaryNode child, /* C */
BalancedBinaryNode grandChild /* B */) {

}

� Returns a reference to the new root of this
subtree.

6/7/2010

5

Insert HA into the tree, then DA, then O.

Delete G from the original tree, then I, J, V.

� Start with an empty AVL tree.Start with an empty AVL tree.Start with an empty AVL tree.Start with an empty AVL tree.

� Add elements in the following order; do
the appropriate rotations when needed.
◦ 1 2 3 4 5 6 11 13 12 10 9 8 7

� How should we rebalance if each of the
following sequences is deleted from the
above tree?
◦ (10 9 7 8) (13) (1 5)

◦ For each of the three sequences, start with the
original 13-element tree. E.g. when deleting
13, assume 10 9 8 7 are still in the tree.

6/7/2010

6

� Red-black trees

� AA trees

◦ Red-Black and AA-trees are simpler to implement than AVL
trees, but harder to understand why they work.

� balanced multiway trees (B+ trees)

◦ Used for disk-based searches, and for database index storage.

◦ Algorithms similar to red-black trees.

� Splay trees

◦ Reasonably simple algorithms, amortized log N time.

� Skip Lists

◦ An alternative to trees

� We will talk about one or more of these alternatives near the
end of the course.

� Digital search tree (trie).

� We store the data digit-by-digit (or letter by
letter).

� How to actually
represent nodes?

6/7/2010

7

� Represent it as a binary tree

� Collapse "single branch" paths.

� Have a single "ε-node"

What is the linking thread which
gathers these disparate branches
into a single discipline? My
answer to these questions is
simple --- it is the art of
programming a computer.

What is the central core of the
subject? What is it that
distinguishes it from the separate
subjects with which it is related?

This slide is from a talk by Owen
Astrachan, given at SIGCSE 2004.

6/7/2010

8

� A BST can be an efficient way to implement ordered
lists. If we keep the tree balanced:
◦ insertion is O(log N)
◦ deletion is O(log N)
◦ search for an element is O(log N)

� What about finding the kth smallest element in the
(zero-based) list?
◦ How would you do it?
◦ What is the running time?
◦ Can we do better?
◦ Can we do findKth() in time that is proportional to the
height of the tree?

� It tells the (zero-based) inorder position of this
node within its subtree
◦ i.e., the size of its left subtree

� class BinaryNodeWithRank extends BinaryNode {
int rank = 0;

}

� But we'll just add the new field to BinaryNode

� How would we do findKfindKfindKfindKthththth?
� How about insertinsertinsertinsert?
� You can think about deletedeletedeletedelete later

Check out the Check out the Check out the Check out the
BSTWithRankBSTWithRankBSTWithRankBSTWithRank
project from project from project from project from
your individual your individual your individual your individual
repositoryrepositoryrepositoryrepository

