AVL Trees

Insertion, deletion, rebalancing... ...all in O(log N) time

Recap: AVL trees An AVL tree is 1. height-balanced 2. a Binary search tree We saw that the maximum height of an AVL tree with N nodes is O(log n). We want to show that after an insertion or deletion (also O(log n) since the height is O(log n)), we can rebalance the tree in O(log n) time. If that is true, then find, insert, and remove, will all be O(Log N). An extra field is needed in each node in order to achieve this speed. Values: / = We call this field the *balance code*. The balance code could be represented by only two bits.

Depends on the first two links in the path from he node with the imbalance (A) down to the newly-inserted node		
First link (down from A)	Second link (down from A's child)	Rotation type (rotate "around A's position")
Left	Left	Single right
Left	Right	Double right
Right	Right	Single left
Right	Left	Double left

The transformations used to rebalance a height-balanced tree after the insertion of a new element: (a) rotation around A, (b) double rotation around A. The height condition codes in A and C in the right-hand drawing of (b) depend on whether the new element is at the bottom of T_2 or T_3 . Both T_2 and T_3 are empty when B is the new element (see also Exercise 9). Notice that in each transformation the inorder of the tree is unchanged and the height of the tree *after* the transformation is the same as the height of the tree *before* the insertion. In each case, there are corresponding mirror-image transformations.

