Properties of Binary Trees

Size vs Height

Binary Tree: Recursive definition

» A Binary Tree is either
- empty, or
> consists of:

- a distinguished node called the root, which contains
an element and two disjoint subtrees

- A left subtree T, which is a binary tree

- Aright subtree Tg, which is a binary tree ‘

P

6/7/2010

Figure 18.20

Recursive view of the node height
calculation:

Hy=Max (H, +1, Hg + 1)

Size and Height of Binary Trees

» If T is a tree, we'll often write h(T) for the
height of the tree, and N(T) for the number of
nodes in the tree

» For a particular h(T), what are the upper and
lower bounds on N(T)?
> Lower: N(T) > (prove it by induction)
> Upper N(T) < (prove it by induction)
> Thus < N(T) < -

» Write bounds for h(T) in terms of N(T)
> Thus < h(T) <

6/7/2010

Extreme Trees

» A tree with the maximum number of nodes for
its height is a full tree.
> Its height is O(log N)

» A tree with the minimum number of nodes for
its height is essentially a
> Its height is O(N)

» Height matters!

- We saw that the algorithms for search, insertion, and
deletion in a Binary Search Tree are O(h(T))

P

Introduction to Balanced
Trees

6/7/2010

6/7/2010

BST algorithms and their efficiency

» Review:
o Efficiency of insertion, deletion, find for

- Array list

- Linked list
» BST insertion algorithm - O(height of tree)
» BST deletion algorithm - O(height of tree)
» BST search algorithm - - O(height of tree)
3 EfflClency (worst case)?

- Can we get a better bound?
- What about balancing the tree each time?
- What do we mean by completely balanced?
> Insert EC G B D F Ainto a tree in that order.
- What is the problem?
> How might we do better? (less is more!)

What have we discovered
about BSTs so far?

» We'd like the worst-case time for find, insert, and delete to be
O(log N).

» The running time for find, insert, and delete are all proportional
to the height of the tree.

» Height of the tree can vary from log N to N.

» Keeping the tree completely balanced is too expensive. Can
require O(N) time to rebalance after insertion or deletion.

» Height-balanced trees may provide a solution.
o A BST T is height balancedif T is empty, or if
| height(T,) - height(Tg) | <1, and
- T, and Ty are both height-balanced.
» What can we say about the maximum height of an

height-balanced tree with N nodes?
Details: next slide

balanced?

Why do we use
absolute value
in the formula?

Height-Balanced trees

» We want to calculate the maximum height of
a height-balanced tree with N nodes.

» It’s not the shortest possible tree, but how
close is it?

» We first look at the dual concept: find the
minimum number of nodes in a HB tree of
height h.

» Make a table of heights and # of nodes.

» What can we say in general about height as a
function of number of nodes?

What is an AVL tree?

» Named for authors of original paper,
Adelson-Velskii and Landis (1962).

» It is a height-balanced Binary Search Tree.

» Recall: ABST T is if
- T is empty, or if
- | height(T,) - height(Tg) | <1, and
- T, and T; are both height-balanced.

» Maximum height of an AVL tree with N
nodes is O(log N).

6/7/2010

Recap: Why we study AVL trees

» For a Binary Search Tree (BST), worst-case for
) , and operations are all O(height

of tree).

» Height of tree can vary from O(log N) to O(N).

» We showed that the height of a height-balanced
tree is always O(log N).

» Thus all three operations will be O(log N) if we can
rebalance after insert or delete in time O(log N)

More on AVL trees

» An AVL tree is
1. height-balanced
2. aBinary search tree
= We saw that the maximum height of an AVL tree
with N nodes is O(log n).
= We want to show that after an insertion or deletion
),
we can rebalance the tree in O(log n) time.
If that is true, then find, insert, and remove, will all be

O(Log N).
= An extra field is needed in each node in order to
achieve this speed. Values: |/ = \

We call this field the balance code.
n T_he balance code could be represented by only two

6/7/2010

6/7/2010

Balancing an AVL tree after insertion

» Assume that the tree is height-balanced before the
insertion.

» Start at the inserted node (always a leaf).

» Move back up the tree to the first (lowest) node (if any)
where the heights of its subtrees now differ by more
than one.

- We'll call that node A in our diagrams.

» Do the appropriate single or double rotation to balance
the subtree whose root is at this node.

» If a rotation is needed, we will see that the combination
of the insertion and rotation leaves this subtree with the
same height that it had before insertion.

» So why is the algorithm O(log N)?

Which kind of rotation to do?

Depends on the first two links in the path from
the node with the imbalance (A) down to the
newly-inserted node.

(down from A) (down from A's (rotate "around
child) A's position")
Left Left Single right
Left Right Double right
Right Right Single left
Right Left Double left

Single left rotation (right is the mirror image
of this picture)

Diagrams are from Data Structures by E.M. Reingold
and W.J. Hansen.

P

6/7/2010

