
6/7/2010

1

Object-oriented Solution

Cooperating QueenQueenQueenQueen objects

� In how many ways can N chess queens be
placed on an NxN grid, so that none of the
queens can attack any other queen?
◦ I.e. no two queens on the same row, same column,

or same diagonal.

6/7/2010

2

� The queen in each column is
represented by a RealQueenRealQueenRealQueenRealQueen object.

� Each RealQueenRealQueenRealQueenRealQueen knows its column
number (fixed), row number (varies), and the queen
that is its neighbor to the left (fixed).

� The neighbor of the RealQueenRealQueenRealQueenRealQueen in column 1 is a
special NullQueenNullQueenNullQueenNullQueen object
◦ whose purpose is to simplify the code for the RealQueenRealQueenRealQueenRealQueen

methods

◦ by eliminating the need for ifs that check to see whether
a Queen has a neighbor (every RealQueenRealQueenRealQueenRealQueen does have a
non-null neighbor).

6/7/2010

3

� Each queen sends messages directly to its
immediate neighbor to the left, and indirectly to all
of its left neighbors.

� The return value that this queen receives after
sending a message always provides information
concerning all of the left neighbors.
For exampleFor exampleFor exampleFor example, when a queen executes

neighbor.canAttackneighbor.canAttackneighbor.canAttackneighbor.canAttack((((currentrowcurrentrowcurrentrowcurrentrow, , , , colcolcolcol););););
The message goes to the immediate neighbor, but
the real question to be answered by this call is
◦ "Hey, neighbors, can any of you attack me if I place

myself on this square of the board?"

� Calls to findFirstfindFirstfindFirstfindFirst()()()() and findNextfindNextfindNextfindNext()()()() have a similar
protocol.

� Build the list of queens. Imagine that they have
been assigned columns but are not yet on the
board.

� Rightmost queen asks its neighbors (in the columns
to its left) to find the first position in which none of
them attack each other.
◦ If they can find such a position, this queen tries to

position itself so that it does not attack any of its
neighbors.
◦ If the rightmost queen (head of the linked list of queens) is

successful at this, the first solution has been found, and the
queens cooperate to record it.

6/7/2010

4

� The Rightmost queen sees if there are other rows in
which it does not attack any other queens.
◦ If so, record them.
◦ Otherwise, the queen asks its neighbors to find the next

position in which they do not attack each other, and so on.

� When the queens get to the point where there is no
next non-attacking position, all solutions have been
found and the algorithm terminates.

6/7/2010

5

Initialize by Initialize by Initialize by Initialize by
making a making a making a making a
linked list of linked list of linked list of linked list of
queens, with queens, with queens, with queens, with
a a a a NullQueenNullQueenNullQueenNullQueen
at the end.at the end.at the end.at the end.

>java RealQueen 5

SOLUTION: 1 3 5 2 4

SOLUTION: 1 4 2 5 3

SOLUTION: 2 4 1 3 5

SOLUTION: 2 5 3 1 4

SOLUTION: 3 1 4 2 5

SOLUTION: 3 5 2 4 1

SOLUTION: 4 1 3 5 2

SOLUTION: 4 2 5 3 1

SOLUTION: 5 2 4 1 3

SOLUTION: 5 3 1 4 2

6/7/2010

6

� Work with your SlidingBlocks partner

� Check out the QueensQueensQueensQueens project from your SVN
repository

� Look at the code together and try to figure
out:
◦ main()

◦ Queen interface

◦ NullQueen class

◦ RealQueen class

� What should findNext() do?

6/7/2010

7

6/7/2010

8

� Some methods are on the next slide.

� You will write some other methods.

What should findNext do?

6/7/2010

9

� Add your names at the top of the RealQueens.java file.
� Write the remaining threeremaining threeremaining threeremaining three methods (stubs are provided). You should not

have to change any of the instance methods that are already complete.
� Test for a small value of MAXROWS to make sure that your code works.
� Add a "solution counter" to main().
� After finding all solutions, print the count.
� Once you are sure the program is working, you may want to add two ifififif

statements in main() so as to only print each individual solution if
MAXROWS <= 6. Thus, you simply print the solution count for large
values of MAXROWS.

� Test your code for various values of MAXROWS. How high a value of
MAXROWS can your program do in a reasonable time? Can you use
System.currentTimeInMillisecondsSystem.currentTimeInMillisecondsSystem.currentTimeInMillisecondsSystem.currentTimeInMilliseconds()()()() to estimate how long it takes to find
the solutions for each value of MAXROWS, and try to get a big-Oh
estimate for the running time?

� When you are done:
◦ Commit to your repository (just one of the partners needs to commit it);

