6/7/2010

Non-attacking Queens
problem

Object-oriented Solution
Cooperating Queen objects

Non-attacking chess queens problem

» In how many ways can N chess queens be
placed on an AMxN grid, so that none of the

queens can attack any other queen?
> |.e. no two queens on the same row, same column,
or same diagonal.

P

6/7/2010

Object-oriented Solution by Timothy
Budd col @

» The queen in each column is row a
represented by a RealQueen object.| 0

» Each RealQueen knows its column ek
number (fixed), row number (varies), and the queen
that is its neighbor to the left (fixed).

» The neighbor of the RealQueenin column 1 is a
special NullQueen object

- whose purpose is to simplify the code for the RealQueen
methods
> by eliminating the need for /s that check to see whether

a Queen has a neighbor (every RealQueen does have a
non-null neighbor).

The Linked List of Queen Objects

A board position is represented as a linked list of Queen objects:

Q
Q
Q
Q
NullQueen 2 4 1 3
NS TN E |
\E| \EI \D \D neighbor
A —

Basic approach

» Each queen sends messages directly to its
immediate neighbor to the left, and indirectly to a//
of its left neighbors.

» The return value that this queen receives after
sending a message always provides information
concerning a// of the left neighbors.

For example, when a queen executes
neighbor.canAttack(currentrow, col);
The message goes to the immediate neighbor, but
the real question to be answered by this call is
- "Hey, neighbors, can any of you attack me if | place
myself on this square of the board?"

» Calls to findFirst() and findNext() have a similar

protocol.

Algorithm outline 1/2

» Build the list of queens. Imagine that they have
been assigned columns but are not yet on the

board.

» Rightmost queen asks its neighbors (in the columns
to its left) to find the first position in which none of
them attack each other.

- If they can find such a position, this queen tries to
position itself so that it does not attack any of its
neighbors.

o If the rightmost queen (head of the linked list of queens) is
successful at this, the first solution has been found, and the
queens cooperate to record it.

6/7/2010

Algorithm outline 2/2

» The Rightmost queen sees if there are other rows in

which it does not attack any other queens.

> If so, record them.

> Otherwise, the queen asks its neighbors to find the next
position in which they do not attack each other, and so on.

» When the queens get to the point where there is no
next non-attacking position, all solutions have been
found and the algorithm terminates.

Demonstrate (for N=4 case)

6/7/2010

Main method

public static void main(String args([]) {

// set up the board
if (args.length == 0)

MAXROWS = 3; Inltll(a_llze by
else rpa mg_a
MAXROWS = Integer.parselnt (args[0]); ||nked||5tpf
queens, with
Queen neighbor = new NullQueen(); a NullQueen
at the end.
for (int i=1; i<=MAXROWS; i++) {
Queen newQueen = new RealQueen{neighbor, 1i);

neighbor = newQueen;

}

/S Now look for the solutions:

if (neighbor.findFirst()) {
System. out.println("30LUTION: " + neighbor);

while (neighbor.findNext())
System. out.println ("SOLUTION: " + neighbor);

Program output:

>java RealQueen 5

SOLUTION:
SOLUTION:
SOLUTION:
SOLUTION:
SOLUTION:
SOLUTION:
SOLUTION:
SOLUTION:
SOLUTION:
SOLUTION:

135214
14253
24135
25314
31425
352141
41352
4 2531
52413
53142

6/7/2010

Some Queens Numbers

addiator 7:dbam > java Reallueen

6: 4 solutions found, 1 milliseconds. 1708 canfttack calls

7% 40 solutions found, 3 milliseconds. 8055 canAttack calls

8: 92 solutions found, 10 milliseconds. 40282 canAttack calls

9: 352 solutions found, 4 milliseconds. 206451 canfAttack calls
10: 724 solutions found, 17 milliseconds. 1091856 canfttack calls

11: 2680 solutions found, 96 milliseconds, 6180871 canfAttack calls

12: 14200 solutions found. 590 milliseconds, 37512342 canfttack calls

13: 73712 solutions found, 3461 milliseconds. 239507629 canfttack calls
14: 365596 solutions found, 22610 milliseconds, 1623486774 canfttack calls

2279184 solutions found, 175544 milliseconds. 11621556251 canAttack calls

Check It Out!

» Work with your SlidingBlocks partner

» Check out the Queens project from your SVN
repository
» Look at the code together and try to figure
out:
> main()
> Queen interface
> NullQueen class
> RealQueen class
- What should findNext() do?

6/7/2010

Queen Interface

public interface Queen

{

// in the descriptions of these methods, "its neighbors" means
// all gueens "to the left" of this. "neighbor' means the
// immediate neighbor (if any).

public¢ boolean findFirst();

// finds the first position for this queen and its neighbors
// such that none of them attack each other. Returns true if
// it finds such & position, false otherwise

public boolean findRext();
// moves this queen to its next legal position (in which it doesn't

// attack any neighbors). If no such position is found,
// it asks its first neighbor to mowe, and then starts over at row 1.
// If neighbors have no untried positions, returns false. Otherwise

// returns true.

public boolean canAttack(int row, int col);
// returns true if this queen (or its neighbors) can attack
// the given row and column, false otherwise.

public String toString();
// A string representing the rows in which this queen and its neighbors.
// are placed.

NullQueen Class

public class NullQueen implements Queen

{

/S The NullQueen represents the end-of-the-line, off-the-board,

// no-real-queen-so—nothing-to attack, only-one-choice.

public boolean findFirst() {
// There is no gqueen to position.
return true;

public boolean findNext() ({

// There is no alternate position. If the null gqueen is

// asked to move, we have searched all board configurations.
return false;

public boolean canAttack(int row, int col) {
// A null queen doesn't attack anything.
return false;

public String toString() {
return "";

6/7/2010

RealQueen Class

» Some methods are on the next slide.
» You will write some other methods.

private Queen neighbor; // next queen to the left.
private int currentRow; // where am I now?

private static int MAXROWS; // How big is the board?

private int column; // What's my (permanent) column?

RealQueen (Queen neighbor, int col)
/S Constructor function. These characteristics, once initialized,
i never change.
{
this.neighbor = neighbor;
this.column = col;
}

public boolean findFirst()
//Find the first row in which to place myself legally. If none
// exists, ask my neighbor to move]
{

currentRow = 1;

if (neighbor.findFirst())

return testOrAdvance () ;
else

return false; What ShO“ld findNext dO?

}

private boolean testOrAdvance ()

// If this is a legal row for me, say so. If not, try the next row.

{
i1f (neighbor.canAttack({currentRow, column))
return findNext();
return true;

6/7/2010

Exercise (with a partner)

v v v ¥

Add your names at the top of the RealQueens.java file.
Write the methods (stubs are provided). You should not
have to change any of the instance methods that are already complete.
Test for a small value of MAXROWS to make sure that your code works.
Add a "solution counter" to main().
After finding all solutions, print the count.
Once you are sure the program is working, you may want to add two
statements in main() so as to only print each individual solution if
MAXROWS <= 6. Thus, you simply print the solution count for large
values of MAXROWS
Test your code for various values of MAXROWS. How high a value of
MAXROWS can your program do in a reasonable time? Can you use

to estimate how long it takes to find
the solutions for each value of MAXROWS, and try to get a big-Oh
estimate for the running time?
When you are done:
> Commit to your repository (just one of the partners needs to commit it);

6/7/2010

