
6/7/2010

1

Backtracking

Non-attacking chess queens

� Given: a (large) set of possible solutions to a
problem. Search SpaceSearch SpaceSearch SpaceSearch Space

� Goal: Find all solutions (or an optimal solution)
from that set.
◦ Is there a way to …

◦ List all possible …

◦ How many …

� Questions:
◦ How do we represent the possible solutions?

◦ How do we organize the search?

◦ Can we eliminate subsets of the possible solution set
without checking each one?

6/7/2010

2

� Always try to extend a partial solution.

� Examples: solving a maze, the “15”
puzzle.

� Taken from:
◦ http://www.cis.upenn.edu/~matuszek/cit5
94-2004/Lectures/38-backtracking.ppt

start ?

?

dead end

dead end

?
?

dead end

dead end

?

success!

dead endhttp://www.cis.upenn.ed
u/~matuszek/cit594-
2004/Lectures/38-
backtracking.ppt

6/7/2010

3

� NonNonNonNon----attacking chess queens problemattacking chess queens problemattacking chess queens problemattacking chess queens problem::::

◦ In how many ways can N chess queens be placed on an NxN
grid, so that none of the queens can attack any other queen?

◦ I.e. there are not two queens on the same row, same column,
or same diagonal.

� There is no "formula" for generating a solution. So we
must generate various placements of queens on the
board and determine which ones are actually solutions.

� We explore various possibilities for the search space
and count the number of potential solutions that must
be tried in each case.

4 x 4 solution …4 x 4 solution …4 x 4 solution …4 x 4 solution …

� In how many ways can N chess queens be
placed on an NxN grid, so that none of the
queens can attack any other queen?
◦ I.e. no two queens on the same row, same column,
or same diagonal.

� In pairs, discuss "possible solution" search
strategies (3 minutes).

6/7/2010

4

� Very Very Very Very naive approach. Perhaps stupid is a better naive approach. Perhaps stupid is a better naive approach. Perhaps stupid is a better naive approach. Perhaps stupid is a better

word!word!word!word!

There are N queens, N2 squares.

� For each queen, try every possible square,

allowing the possibility of multiple queens in the

same square.

◦ Represent each potential solution as an N-item array of

pairs of integers (a row and a column for each queen).

◦ Generate all such arrays (you should be able to write

code that would do this) and check to see which ones are

solutions.

◦ Number of possibilities to try in the NxN case:

◦ Specific number for N=8:
281,474,976,710,656281,474,976,710,656281,474,976,710,656281,474,976,710,656

Slight Slight Slight Slight improvement.improvement.improvement.improvement. There are N queens, N2

squares. For each queen, try every possible
square, notice that we can't have multiple
queens on the same square.

◦ Represent each potential solution as an N-item
array of pairs of integers (a row and a column for
each queen).

◦ Generate all such arrays and check to see which
ones are solutions.

◦ Number of possibilities to try in NxN case:

◦ Specific number for N=8:

178,462,987,637,760178,462,987,637,760178,462,987,637,760178,462,987,637,760

(vs. 281,474,976,710,656)(vs. 281,474,976,710,656)(vs. 281,474,976,710,656)(vs. 281,474,976,710,656)

6/7/2010

5

� Slightly Slightly Slightly Slightly better approach.better approach.better approach.better approach. There are N queens, N

columns. If two queens are in the same column, they

will attack each other. Thus there must be exactly one

queen per column.

� Represent a potential solution as an N-item array of

integers.

◦ Each array position represents the queen in one column.

◦ The number stored in an array position represents the row of

that column's queen.

◦ Show array for 4x4 solution.

� Generate all such arrays and check to see which ones are

solutions.

� Number of possibilities to try in NxN case:

� Specific number for N=8:
16,777,21616,777,21616,777,21616,777,216

� Still Still Still Still better better better better approachapproachapproachapproach There must also be
exactly one queen per row.

� Represent the data just as before, but notice
that the data in the array is a _____________.
◦ Generate each of these and check to see which ones
are solutions.

◦ How How How How to generate?to generate?to generate?to generate? A good thing to think about.

◦ Number of possibilities to try in NxN case:

◦ Specific number for N=8:

40,32040,32040,32040,320

6/7/2010

6

� Backtracking solutionBacktracking solutionBacktracking solutionBacktracking solution

� Instead of generating all permutations of N

queens and checking to see if each is a solution,

we generate "partial placements" by placing one

queen at a time on the board

� Once we have successfully placed k<N queens,

we try to extend the partial solution by placing a

queen in the next column.

� When we extend to N queens, we have a solution.

� Demonstrate Demonstrate Demonstrate Demonstrate for the 8x8 case using the applet for the 8x8 case using the applet for the 8x8 case using the applet for the 8x8 case using the applet

whose link is on the next slide.whose link is on the next slide.whose link is on the next slide.whose link is on the next slide.

http://homepage.tinet.ie/~pdpals/8que
ens.htm

And here is a nice applet showing the
solutions:

http://www.dcs.ed.ac.uk/home/mlj/de
mos/queens/

6/7/2010

7

>java RealQueen 5

SOLUTION: 1 3 5 2 4

SOLUTION: 1 4 2 5 3

SOLUTION: 2 4 1 3 5

SOLUTION: 2 5 3 1 4

SOLUTION: 3 1 4 2 5

SOLUTION: 3 5 2 4 1

SOLUTION: 4 1 3 5 2

SOLUTION: 4 2 5 3 1

SOLUTION: 5 2 4 1 3

SOLUTION: 5 3 1 4 2

� The queen in each column is
represented by a RealQueenRealQueenRealQueenRealQueen object.

� Each RealQueenRealQueenRealQueenRealQueen knows its column
number (fixed), row number (varies), and the queen
that is its neighbor to the left (fixed).

� The neighbor of the RealQueenRealQueenRealQueenRealQueen in column 1 is a
special NullQueenNullQueenNullQueenNullQueen object
◦ whose purpose is to simplify the code for the RealQueenRealQueenRealQueenRealQueen
methods

◦ by eliminating the need for ifs that check to see whether
a Queen has a neighbor (every RealQueenRealQueenRealQueenRealQueen does have a
non-null neighbor).

6/7/2010

8

� Each queen sends messages directly to its immediate

neighbor to the left, and indirectly to all of its left

neighbors.

� The return value that this queen receives after sending a

message always provides information concerning all of

the left neighbors.

For exampleFor exampleFor exampleFor example, when a queen executes

neighbor.canAttackneighbor.canAttackneighbor.canAttackneighbor.canAttack((((currentrowcurrentrowcurrentrowcurrentrow, , , , colcolcolcol););););

The message goes to the immediate neighbor, but the

real question to be answered by this call is

◦ "Hey, neighbors, can any of you attack me if I place myself on

this square of the board?"

� Calls to findFirstfindFirstfindFirstfindFirst()()()() and findNextfindNextfindNextfindNext()()()() have a similar protocol.

6/7/2010

9

� A queen asks its neighbors (in the columns to its left) to

find the first position in which none of them attack each

other.

◦ If they can find such a position, this queen tries to position itself

so that it does not attack any of its neighbors.

� If the rightmost queen (head of the linked list of queens)

is successful at this, a solution has been found, and the

queens cooperate in recording it.

� Otherwise, the queen asks its neighbors to find the next

position in which they do not attack each other.

� When the queens get to the point where there is no next

non-attacking position, all solutions have been found

and the algorithm terminates.

