Exhaustive Search

Backtracking
Non-attacking chess queens

Exhaustive search

» Given: a (large) set of possible solutions to a
problem. Search Space
» Goal: Find all solutions (or an optimal solution)
from that set.
> Is there away to ...
o List all possible ...
° How many ...
» Questions:
- How do we represent the possible solutions?
- How do we organize the search?

- Can we eliminate subsets of the possible solution set
without checking each one?

6/7/2010

Backtracking

puzzle.
» Taken from:

» Always try to extend a partial solution.
» Examples: solving a maze, the “15”

o http://www.cis.upenn.edu/~matuszek/cit5

94-2004/Lectures/38-backtracking.ppt

-
==

!
g i

-
U

= UL 1—
7 =
- =

| =

7

b
L
fhmt

1z

P

Backtracking (animation)

dead end
2 4//7

¥~ dead end
/ / dead end
7
start—> 2 —» 2 =¥ %deadend

http: WWW.cis.upenn.ed\ dead end
?4//7

u/~matuszek/cit594
2004 /Lectures/38-

backtracking.ppt success!

P

6/7/2010

A famous exhaustive search problem

» Non-attacking chess queens problem:

> In how many ways can N chess queens be placed on an NxN
grid, so that none of the queens can attack any other queen?

> |.e. there are not two queens on the same row, same column,
or same diagonal.

» There is no "formula" for generating a solution. So we
must generate various placements of queens on the
board and determine which ones are actually solutions.

» We explore various possibilities for the search space
and count the number of potential solutions that must
be tried in each case.

4 x 4 solution ...

Non-attacking chess queens problem

» In how many ways can N chess queens be
placed on an AMxN grid, so that none of the
queens can attack any other queen?

> l.e. no two queens on the same row, same column,
or same diagonal.

» In pairs, discuss "possible solution” search
strategies (3 minutes).

6/7/2010

Search Space Possibilities 1/5

» Very naive approach. Perhaps stupid is a better
word!
There are N queens, N2 squares.

» For each queen, try every possible square,
allowing the possibility of multiple queens in the
same square.

- Represent each potential solution as an N-item array of
pairs of integers (a row and a column for each queen).
> Generate all such arrays (you should be able to write
code that would do this) and check to see which ones are
solutions.
> Number of possibilities to try in the NxN case:
- Specific number for N=8:

281,474,976,710,656

Search Space Possibilities 2/5

Slight improvement. There are N queens, N2
squares. For each queen, try every possible
square, notice that we can't have multiple
gueens on the same square.

- Represent each potential solution as an N-item
array of pairs of integers (a row and a column for
each queen).

> Generate all such arrays and check to see which
ones are solutions.

- Number of possibilities to try in NxN case:

> Specific number for N=8:

178,462,987,637,760
(vs. 281,474,976,710,656)

6/7/2010

Search Space Possibilities 3/5

» Slightly better approach. There are N queens, N
columns. If two queens are in the same column, they
will attack each other. Thus there must be exactly one
queen per column.

» Represent a potential solution as an N-item array of
integers.
- Each array position represents the queen in one column.

> The number stored in an array position represents the row of
that column's queen.

> Show array for 4x4 solution.

- Generate all such arrays and check to see which ones are
solutions.

+ Number of possibilities to try in NxN case:
- Specific number for N=8:
16,777,216

Search Space Possibilities 4/5

» Still better approach There must also be
exactly one queen per row.

» Represent the data just as before, but notice
that the data inthe arrayisa _____________
- Generate each of these and check to see which ones
are solutions.
- How to generate? A good thing to think about.
> Number of possibilities to try in NxN case:
> Specific number for N=8:

40,320

6/7/2010

Search Space Possibilities 5/5

» Backtracking solution

» Instead of generating all permutations of N
gueens and checking to see if each is a solution,
we generate "partial placements” by placing one
gueen at a time on the board

» Once we have successfully placed k<N queens,
we try to extend the partial solution by placing a
queen in the next column.

» When we extend to N queens, we have a solution.

» Demonstrate for the 8x8 case using the applet
whose link is on the next slide.

8 x 8 Case

http://homepage.tinet.ie/~pdpals/8que

ens.htm
And here is a nice applet showing the
solutions:
http://www.dcs.ed.ac.uk/home/mlj/de
mos/queens/

6/7/2010

6/7/2010

Program output:
>

SOLUTION: 1 3 5 2 4
SOLUTION: 1 4 2 5 3
SOLUTION: 2 4 1 3 5
SOLUTION: 2 5 3 1 4
SOLUTION: 3 1 4 2 5
SOLUTION: 3 5 2 41
SOLUTION: 4 1 3 5 2
SOLUTION: 4 2 5 3 1
SOLUTION: 5 2 41 3
SOLUTION: 5 3 1 4 2

Object-oriented Solution by Timothy
Budd col E

» The queen in each column is row a
represented by a RealQueen object.

neighbo O
» Each RealQueen knows its column eigkbet
number (fixed), row number (varies), and the queen
that is its neighbor to the left (fixed).

» The neighbor of the RealQueenin column 1 is a
special NullQueen object
- whose purpose is to simplify the code for the RealQueen
methods
> by eliminating the need for /s that check to see whether
a Queen has a neighbor (every RealQueen does have a
non-null neighbor).

6/7/2010

The Linked List of Queen Objects

A board position is represented as a linked list of Queen objects:

neighbor

Q
Q
Q
Q
[4]
NullQueen'\\ 1\1\\
T [U

Outline of the algorithm

» Each queen sends messages directly to its immediate
neighbor to the left, and indirectly to a// of its left
neighbors.

» The return value that this queen receives after sending a
message always provides information concerning a// of
the left neighbors.

For example, when a queen executes
neighbor.canAttack(currentrow, col);

The message goes to the immediate neighbor, but the

real question to be answered by this call is

> "Hey, neighbors, can any of you attack me if | place myself on
this square of the board?"

» Calls to findFirst() and findNext() have a similar protocol.

More algorithm outline

» A queen asks its neighbors (in the columns to its left) to
find the first position in which none of them attack each
other.

- If they can find such a position, this queen tries to position itself
so that it does not attack any of its neighbors.

» If the rightmost queen (head of the linked list of queens)
is successful at this, a solution has been found, and the
queens cooperate in recording it.

» Otherwise, the queen asks its neighbors to find the next
position in which they do not attack each other.

» When the queens get to the point where there is no next

non-attacking position, all solutions have been found

and the algorithm terminates.

6/7/2010

