Exhaustive Search

Exhaustive search

- Given: a (large) set of possible solutions to a problem. Search Space
- Goal: Find all solutions (or an optimal solution) from that set.
- Is there a way to ..
- List all possible ...

How many ...

- Questions:
- How do we represent the possible solutions?
- How do we organize the search?
- Can we eliminate subsets of the possible solution set without checking each one?

Backtracking

- Always try to extend a partial solution.
- Examples: solving a maze, the " 15 " puzzle.
- Taken from:
- http://www.cis.upenn.edu/~matuszek/cit5 94-2004/Lectures/38-backtracking.ppt

Backtracking (animation)

A famous exhaustive search problem

- Non-attacking chess queens problem:
- In how many ways can N chess queens be placed on an $N \times N$ grid, so that none of the queens can attack any other queen?
I.e. there are not two queens on the same row, same column, or same diagonal.
- There is no "formula" for generating a solution. So we must generate various placements of queens on the board and determine which ones are actually solutions.
- We explore various possibilities for the search space and count the number of potential solutions that must be tried in each case.

4×4 solution ...

Non-attacking chess queens problem

- In how many ways can N chess queens be placed on an $N \times N$ grid, so that none of the queens can attack any other queen?
- I.e. no two queens on the same row, same column, or same diagonal.
- In pairs, discuss "possible solution" search strategies (3 minutes).

Search Space Possibilities $1 / 5$

- Very naive approach. Perhaps stupid is a better word!
There are N queens, N^{2} squares.
- For each queen, try every possible square, allowing the possibility of multiple queens in the same square.
- Represent each potential solution as an N -item array of pairs of integers (a row and a column for each queen).
- Generate all such arrays (you should be able to write code that would do this) and check to see which ones are solutions.
Number of possibilities to try in the NxN case:
Specific number for $\mathrm{N}=8$:
$281,474,976,710,656$

Search Space Possibilities 2 / 5

Slight improvement. There are N queens, N^{2} squares. For each queen, try every possible square, notice that we can't have multiple queens on the same square.

- Represent each potential solution as an N-item array of pairs of integers (a row and a column for each queen).
Generate all such arrays and check to see which ones are solutions.
Number of possibilities to try in NxN case:
Specific number for $\mathrm{N}=8$:

Search Space Possibilities 3/5

- Slightly better approach. There are N queens, N columns. If two queens are in the same column, they will attack each other. Thus there must be exactly one queen per column.
- Represent a potential solution as an N -item array of integers.
- Each array position represents the queen in one column.
- The number stored in an array position represents the row of that column's queen.
Show array for 4×4 solution.
- Generate all such arrays and check to see which ones are solutions.
- Number of possibilities to try in $\mathrm{N} \times \mathrm{N}$ case:

Specific number for $\mathrm{N}=8$:

Search Space Possibilities 4/5

- Still better approach There must also be exactly one queen per row.
- Represent the data just as before, but notice that the data in the array is a \qquad .
- Generate each of these and check to see which ones are solutions.
- How to generate? A good thing to think about.
- Number of possibilities to try in NxN case:
- Specific number for $\mathrm{N}=8$:

40,320

Search Space Possibilities 5/5

- Backtracking solution
- Instead of generating all permutations of N queens and checking to see if each is a solution, we generate "partial placements" by placing one queen at a time on the board
- Once we have successfully placed $\mathrm{k}<\mathrm{N}$ queens, we try to extend the partial solution by placing a queen in the next column.
- When we extend to N queens, we have a solution.
- Demonstrate for the 8×8 case using the applet whose link is on the next slide.
8×8 Case
http://homepage.tinet.ie/~pdpals/8que ens.htm
And here is a nice applet showing the solutions:
http://www.dcs.ed.ac.uk/home/mlj/de mos/queens/

Program output:

```
>java RealQueen 5
SOLUTION: 1 3 5 2 4
SOLUTION: 1 4 2 5 3
SOLUTION: 2 4 1 3 5
SOLUTION: 2 5 3 1 4
SOLUTION: 3 1 4 2 5
SOLUTION: 3 5 2 4 1
SOLUTION: 4 1 3 5 2
SOLUTION: 4 2 5 3 1
SOLUTION: 5 2 4 1 3
SOLUTION: 5 3 1 4 2
```


Object-oriented Solution by Timothy

 Budd- The queen in each column is represented by a RealQueen object.
- Each RealQueen knows its column
 number (fixed), row number (varies), and the queen that is its neighbor to the left (fixed).
- The neighbor of the RealQueen in column 1 is a special NullQueen object
- whose purpose is to simplify the code for the RealQueen methods
by eliminating the need for ifs that check to see whether a Queen has a neighbor (every RealQueen does have a non-null neighbor).

The Linked List of Queen Objects

A board position is represented as a linked list of Queen objects:

困

Outline of the algorithm

- Each queen sends messages directly to its immediate neighbor to the left, and indirectly to all of its left neighbors.
- The return value that this queen receives after sending a message always provides information concerning al/ of the left neighbors.
For example, when a queen executes
neighbor.canAttack(currentrow, col);
The message goes to the immediate neighbor, but the real question to be answered by this call is
"Hey, neighbors, can any of you attack me if I place myself on this square of the board?"
- Calls to findFirst() and findNext() have a similar protocol.

More algorithm outline

- A queen asks its neighbors (in the columns to its left) to find the first position in which none of them attack each other.
- If they can find such a position, this queen tries to position itself so that it does not attack any of its neighbors.
- If the rightmost queen (head of the linked list of queens) is successful at this, a solution has been found, and the queens cooperate in recording it.
- Otherwise, the queen asks its neighbors to find the next position in which they do not attack each other.
- When the queens get to the point where there is no next non-attacking position, all solutions have been found and the algorithm terminates.

