Exhaustive Search Backtracking Non-attacking chess queens

Exhaustive search

- Given: a (large) set of possible solutions to a problem. Search Space
- Goal: Find all solutions (or an optimal solution) from that set.
 - Is there a way to ...
 - List all possible ...
 - $\,\circ\,$ How many \ldots
- Questions:
 - How do we represent the possible solutions?
 - How do we organize the search?
 - Can we eliminate subsets of the possible solution set without checking each one?

Search Space Possibilities 5/5

- Backtracking solution
- Instead of generating all permutations of N queens and checking to see if each is a solution, we generate "partial placements" by placing one queen at a time on the board
- Once we have successfully placed k<N queens, we try to *extend* the partial solution by placing a queen in the next column.
- > When we extend to N queens, we have a solution.
- Demonstrate for the 8x8 case using the applet whose link is on the next slide.

8 x 8 Case

http://homepage.tinet.ie/~pdpals/8que ens.htm

And here is a nice applet showing the solutions:

http://www.dcs.ed.ac.uk/home/mlj/de mos/queens/

Program output:

>java RealQueen 5						
SOLUTION	:	1	3	5	2	4
SOLUTION	:	1	4	2	5	3
SOLUTION	:	2	4	1	3	5
SOLUTION	:	2	5	3	1	4
SOLUTION	:	3	1	4	2	5
SOLUTION	:	3	5	2	4	1
SOLUTION	:	4	1	3	5	2
SOLUTION	:	4	2	5	3	1
SOLUTION	:	5	2	4	1	3
SOLUTION	:	5	3	1	4	2

More algorithm outline

- A queen asks its neighbors (in the columns to its left) to find the first position in which none of them attack each other.
 - If they can find such a position, this queen tries to position itself so that it does not attack any of its neighbors.
- If the rightmost queen (head of the linked list of queens) is successful at this, a solution has been found, and the queens cooperate in recording it.
- Otherwise, the queen asks its neighbors to find the next position in which they do not attack each other.
- When the queens get to the point where there is no next non-attacking position, all solutions have been found and the algorithm terminates.