A Helpful Link on Tree Traversals and Iterators

- Thanks to Austin Tam for this one
- http://nova.umuc.edu/~jarc/idsv/lesson1.html - I put the link under Resources in Day 10 on the schedule page.

Strong Induction Practice

Analysis of a simple algorithm

Strong Induction

To prove that $p(n)$ is true for all $n \geq n_{0}$, it is sufficient to show the following two things:
a) $p\left(n_{0}\right)$ is true.
b) for all $k>n_{0}$, if $p(j)$ is true for
all j with $n_{0} \leq j<k$, then $p(k)$ is also true.

Strong Induction Example

```
int i = n;
while ( i > 1 )
i = i/2; //integer division
```

Let $\mathbf{T}(\mathbf{n})$ be the number of iterations of the above loop. Formula for $\mathrm{T}(\mathrm{n})$?
$\mathrm{P}(n): \mathrm{T}(\mathrm{n})$ is $\lfloor\log n\rfloor$ (Recall that ${ }^{\log \mathrm{n} "}$ means ${ } \log _{2} \mathrm{n}$ ")
Show that $P(n)$ is true for all positive integers n.
Base case: $\mathbf{n}=1:$ Clearly $T(1)=0$, and $\lfloor\log 1\rfloor=0$
Induction step: $\mathbf{n > 1}$:
Assume that $P(j)$ is true for all j with $1 \leq \mathrm{j}<\mathrm{n}$, and show that $\mathrm{P}(\mathrm{n})$ is true

Strong Induction Example - page 2

$\mathbf{P}(\boldsymbol{n}): \mathrm{T}(\mathrm{n})$ is floor $(\log n)$

$$
\begin{gathered}
\text { int } i=n ; \\
\text { while }(i>1) \\
i=i / 2 ;
\end{gathered}
$$

Induction step: Assume that $P(j)$ is true for all k with $1 \leq j<n$, and show that $\mathrm{P}(\mathrm{n})$ is true

Case 1. n is even. Then $T(n)=1+T(n / 2)$
Now we can use the induction hypothesis, since $1 \leq n / 2<n$. Thus

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =1+\text { floor }(\log (\mathrm{n} / 2) \quad \text { How can we simplify? } \\
& =1+\text { floor }(\log \mathrm{n}-\log 2)) \quad \text { What is } \log 2 ? \\
& =1+\text { floor }(\log \mathrm{n}-1) \quad \text { What can we do with the } 1 \text { inside the floor? } \\
& =1+\text { floor }(\log n)-1 \\
& =\text { floor }(\log n)
\end{aligned}
$$

Strong Induction Example - page 3

$$
\begin{gathered}
\text { int } i=n ; \\
\text { while }(i>1) \\
i=i / 2
\end{gathered}
$$

$\mathbf{P}(\boldsymbol{n}): \mathrm{T}(\mathrm{n})=$ floor $(\log n)$.
Show that $\mathrm{P}(n)$ is true for all positive integers n
Induction step. Assume that $P(j)$ is true for all j with $1 \leq j<n$, and show that $\mathrm{P}(\mathrm{n})$ is true
Case 2. \mathbf{n} is odd. You fill in the details. (on quiz, use handout)

Binary Tree: Recursive definition

- A Binary Tree is either
- empty, or
consists of:
- a distinguished node called the root, which contains an element, and two disjoint subtrees
- A left subtree T_{L}, which is a binary tree
- A right subtree T_{R}, which is a binary tree

Recap: Correct Merge Method

/**

* Merge routine for BinaryTree class.
* Forms a new tree from rootItem, t1 and t2.
* Does not allow t1 and t2 to be the same.
* Correctly handles other aliasing conditions.
*/
public void merge(AnyType rootItem,
BinaryTree<AnyType> t1, BinaryTree<AnyType> t2)
\{
if(t1. root $==\mathrm{t} 2$. root \& t 1 . root $!=$ nul1) throw new IllegalArgumentException();
// Allocate new node
root $=$ new BinaryNode<AnyType>(rootItem, t1.root, t2.root $)$;
// Ensure that every node is in one tree
if(this ! $=$ t1)
t1. root = nul1; Can you see why we might not want
if(this != t2)
t2. root = null;
\}
to use duplicate for the normal case?

Properties of Binary Trees

Size vs Height

Size and Height of Binary Trees

- If T is a tree, we'll often write $h(T)$ for the height of the tree, and $N(T)$ for the number of nodes in the tree
- For a particular $h(T)$, what are the upper and lower bounds on $\mathrm{N}(\mathrm{T})$?
Lower: $N(T) \geq$ ___ (prove it by induction)
Upper $\mathrm{N}(\mathrm{T}) \leq \ldots \quad$ (prove it by induction)
Thus \qquad $\leq N(T) \leq$ \qquad
- Write bounds for $h(T)$ in terms of $N(T)$

Thus \qquad $\leq h(T) \leq$ \qquad

Extreme Trees

- A tree with the maximum number of nodes for its height is a full tree.
- Its height is $\mathrm{O}(\log \mathrm{N})$
- A tree with the minimum number of nodes for its height is essentially a \qquad
\qquad - Its height is $\mathrm{O}(\mathrm{N})$
- Height matters!
- We will see the the algorithms for search, insertion, and deletion in a Binary search tree are $\mathrm{O}(\mathrm{h}(\mathrm{T})$)

Binary Search Trees

Definition
Algorithms
Properties

Binary Search Trees

- A Binary Search Tree (BST) is a Binary tree with the following additional properties:

1. The elements are Comparable, and are not allowed to be null
2. No duplicates are allowed
3. If the tree T is non-empty, all elements in T's left subtree are less than the root element
4. if the tree T is non-empty, all elements in T 's right subtree are greater than the root element
5. Both subtrees are BSTs

- Advantage: Easy (and fast?) lookup of items O(height(T))

BST Algorithms

public class BinarySearchTree<T extends Comparable<T>> \{

```
private BinaryNode<T> root;
```

public BinarySearchTree() \{
this.root $=$ null;
\}
// Does this tree contain obj?
public boolean contains (T obj)
// insert obj, if not already there
public void insert(T obj)
// delete obj, if it's there
public void delete(T obj)

Check out the BST project from your repository, and join me in writing these methods.

Tree Balancing

- Algorithms are $\mathrm{O}(\mathrm{h}(\mathrm{T})$).
- What are the bounds on $h(T)$?
- Can we keep it at the best case?
- Rebalance after every insertion?
- D B F C EAGH
- The problem with this ...
- Other alternatives?

