6/7/2010

A Helpful Link on Tree Traversals

and lterators

» Thanks to Austin Tam for this one

» http://nova.umuc.edu/~jarc/idsv/lessonl1.html

» | put the link under Resources in Day 10 on the
schedule page.

P

Strong Induction Practice

Analysis of a simple algorithm

Strong Induction

To prove that p(n) is true for all n > n, it is
sufficient to show the following two things:
a) p(n,) is true.
b) for all k>n, if p(j) is true for
all jwith ng <j <k,
then p(k) is also true.

Strong Induction Example
int i = n;
while (1 > 1)
i =1i/2; //integer division
Let T(n) be the number of iterations of the above loop. Formula for T(n)?
P(r): T(n)isLlog n] (Recall that "log n" means "log,n")
Show that P(n) is true for all positive integers n.

Base case: n=1: Clearly T(1) =0, and Llog 11=0
Induction step: n>1:

Assume that P(j) is true for all j with 1<) <n,
d show that P(n) is true

6/7/2010

6/7/2010

Strong Induction Example - page 2

P(n): T(n) is floor(log n) 13;;]:: (n; > 1)
Show that P(n) is true for all positive integers n i=i/2;

Induction step: Assume that P(j) is true for all k with 1 <j <n, and
show that P(n) is true

Case 1. niseven. Then T(n) =1+ T(n/2)

Now we can use the induction hypothesis, since 1 < n/2 <n. Thus
T(n) = 1 + floor(log (n/2) How can we simplify?

=1+ floor (log n -log 2)) What is log 2?

=1+ floor logn-1) Whatcanwe do with the 1 inside the floor?
=1+ floor (logn) - 1

= floor (log n)

Strong Induction Example - page 3
int i = n;
while (i > 1)
P(n): T(n) = floor(log n). i=1/z2;
Show that P(n) is true for all positive integers n

Induction step. Assume that P(j) is true for all jwith 1 <j < n,
and show that P(n) is true

Case 2. nis odd. Youfill in the details. (on quiz, use handout)

Binary Tree: Recursive definition

» A Binary Tree is either
- empty, or
> consists of:

- a distinguished node called the root, which contains
an element, and two disjoint subtrees

- A left subtree T, which is a binary tree
+ A right subtree Ty, which is a binary tree

Recap: Correct Merge Method

/**
* Merge routine for BinaryTree class.
* Forms a new tree from rootItem, tl and t2.
* Does not allow tl and t2 to be the same,
* Correctly handles other aliasing conditions.
*/
pubTic void merge(AnyType rootItem,
BinaryTree<AnyType> t1, BinaryTree<AnyType> t2)
{ PPN
if(tl.root == t2.root && tl.root != null) Student sqggestlon. We COUI.d have
throw new I1legalArgumentException(); used dupllcate here to get different
trees with the same content.
// Allocate new node
root = new BinaryNode<AnyType>(rootItem, tl.root, t2.root);

// Ensure that every node is in one tree
if(this !'= t1)

tl.root = null; Can you see why we might not want
Tf(this 1= €2) to use duplicate for the normal
t2.root = null; P
} case?

utine for the BinaryTree class

6/7/2010

6/7/2010

Properties of Binary Trees

Size vs Height

Size and Height of Binary Trees

» If T is a tree, we'll often write h(T) for the
height of the tree, and N(T) for the number of
nodes in the tree

» For a particular h(T), what are the upper and
lower bounds on N(T)?
> Lower: N(T) > (prove it by induction)
> Upper N(T) < (prove it by induction)
> Thus < N(T) <

» Write bounds for h(T) in terms of N(T)
> Thus < h() =<

P

Extreme Trees

» A tree with the maximum number of nodes for
its height is a full tree.
> Its height is O(log N)

» A tree with the minimum number of nodes for
its height is essentially a
> Its height is O(N)

» Height matters!

- We will see the the algorithms for search, insertion,
and deletion in a Binary search tree are O(h(T))

P

Binary Search Trees
Definition
Algorithms
Properties

6/7/2010

Binary Search Trees

to be null
2. No duplicates are allowed

5. Both subtrees are BSTs

> O(height(T))

» A Binary Search Tree (BST) is a Binary tree with
the following additional properties:
1. The elements are Comparable, and are not allowed

3. If the tree T is non-empty, all elements in T’s left
subtree are less than the root element

4. if the tree T is non-empty, all elements in T’s right
subtree are greater than the root element

» Advantage: Easy (and fast?) lookup of items

BST Algorithms

private BinaryNode<T> root;

public BinarySearchTree() {
this.root = null;
}

// Does this tree contain obj?
public boolean contains (T obj)

// insert obj, if not already there
public void insert (T obj)

// delete obj, if it's there
public void delete (T obj)

public class BinarySearchTree<T extends Comparable<T>> {

Check out the
BST project from
your repository,
and join me in
writing these
methods.

6/7/2010

Tree Balancing

» Algorithms are O(h(T)).
» What are the bounds on h(T)?

» Can we keep it at the best case?
- Rebalance after every insertion?
-DBFCEAGH
> The problem with this ...
> Other alternatives?

6/7/2010

