
6/7/2010

1

� Thanks to Austin Tam for this one

� http://nova.umuc.edu/~jarc/idsv/lesson1.html

� I put the link under ResourcesResourcesResourcesResources in Day 10 on the
schedule page.

Analysis of a simple algorithm

6/7/2010

2

To prove that p(n) is true for all n ≥ n0, it is
sufficient to show the following two things:

a) p(n0) is true.

b) for all k>n0, if p(j) is true for

all j with n0 ≤ j < k,

then p(k) is also true.

int i = n;

while (i > 1)

i = i/2; //integer division

Let T(n) be the number of iterations of the above loop. Formula for T(n)?

P(P(P(P(nnnn)))): T(n) is log n (Recall that "log n" means "log2n")

Show that P(n) is true for all positive integers n.

Base case: n=1: Clearly T(1) = 0, and log 1 = 0

Induction step: n>1:

Assume that P(j) is true for all j with 1≤ j < n,

and show that P(n) is true

6/7/2010

3

int i = n;

while (i > 1)
i = i/2;

P(n): T(n) is floor(log n)
Show that P(n) is true for all positive integers n

Induction step: Assume that P(j) is true for all k with 1 ≤ j < n, and

show that P(n) is true

Case 1. n is even. Then T(n) = 1 + T(n/2)

Now we can use the induction hypothesis, since 1 ≤ n/2 < n. Thus

T(n) = 1 + floor(log (n/2) How can we simplify?How can we simplify?How can we simplify?How can we simplify?

= 1 + floor (log n - log 2)) What is log 2?What is log 2?What is log 2?What is log 2?

= 1 + floor (log n - 1) What What What What can we do with the 1 inside the floor?can we do with the 1 inside the floor?can we do with the 1 inside the floor?can we do with the 1 inside the floor?

= 1 + floor (log n) - 1

= floor (log n)

int i = n;

while (i > 1)

i = i/2;
P(n): T(n) = floor(log n).
Show that P(n) is true for all positive integers n

Induction step. Assume that P(j) is true for all j with 1 ≤ j < n,

and show that P(n) is true

Case 2. n is odd. You fill in the details. (on quiz, use handout)

6/7/2010

4

� A Binary Tree is either
◦ emptyemptyemptyempty, or

◦ consists ofconsists ofconsists ofconsists of:

� a distinguished node called the root, which contains
an element, and two disjoint subtrees

� A left subtree TL, which is a binary tree

� A right subtree TR, which is a binary tree
root

TL

TR

Student suggestion: We could have
used duplicateduplicateduplicateduplicate here to get different
trees with the same content.

Can you see why we might not want
to use duplicateduplicateduplicateduplicate for the normal
case?

6/7/2010

5

Size vs Height

� If TTTT is a tree, we'll often write h(T)h(T)h(T)h(T) for the
height of the tree, and N(T)N(T)N(T)N(T) for the number of
nodes in the tree

� For a particular h(T), what are the upper and
lower bounds on N(T)?
◦ Lower:Lower:Lower:Lower: N(T) ≥ (prove it by induction)

◦ UpperUpperUpperUpper N(T) ≤ (prove it by induction)

◦ Thus ≤ N(T) ≤ .

� Write bounds for h(T) in terms of N(T)
◦ Thus ≤ h(T) ≤ .

6/7/2010

6

� A tree with the maximum number of nodes for
its height is a full full full full tree.
◦ Its height is O(log N)O(log N)O(log N)O(log N)

� A tree with the minimum number of nodes for
its height is essentially a .
◦ Its height is O(N)O(N)O(N)O(N)

� Height matters!
◦ We will see the the algorithms for search, insertion,
and deletion in a Binary search tree are O(h(T))O(h(T))O(h(T))O(h(T))

Definition
Algorithms
Properties

6/7/2010

7

� A Binary Search Tree Binary Search Tree Binary Search Tree Binary Search Tree (BST) is a Binary tree with

the following additional properties:

1. The elements are Comparable, and are not allowed

to be null

2. No duplicates are allowed

3. If the tree T is non-empty , all elements in T’s left

subtree are less than the root element

4. if the tree T is non-empty, all elements in T’s right

subtree are greater than the root element

5. Both subtrees are BSTs

� Advantage: Advantage: Advantage: Advantage: Easy (and fast?) lookup of items

◦ O(height(T))

public class BinarySearchTree<T extends Comparable<T>> {

private BinaryNode<T> root;

public BinarySearchTree() {

this.root = null;

}

// Does this tree contain obj?

public boolean contains(T obj)

// insert obj, if not already there

public void insert(T obj)

// delete obj, if it's there

public void delete(T obj)

Check out the Check out the Check out the Check out the
BST project from BST project from BST project from BST project from
your repository, your repository, your repository, your repository,
and join me in and join me in and join me in and join me in
writing these writing these writing these writing these
methods.methods.methods.methods.

6/7/2010

8

� Algorithms are O(h(T)).

� What are the bounds on h(T)?

� Can we keep it at the best case?
◦ Rebalance after every insertion?

◦ D B F C E A G H

◦ The problem with this …

◦ Other alternatives?

