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� A Binary Tree is either
◦ emptyemptyemptyempty,      or

◦ consistsconsistsconsistsconsists of:

� a distinguished node called the root, which contains 
an element, and 

� A left subtree TL, which is a binary tree

� A right subtree TR, which is a binary tree
root

TL

TR
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Build up a 
particular 
tree by 
calling the 
constructor.

size, height 
for tree, 
node

duplicate

contains

merge

� Public void merge(AnyType rootItem,
BinaryTree<AnyType > t1,
BinaryTree<AnyType > t2)

� Simple approach:
◦ this.root = new BinaryNode<AnyType>(rootItem, 

t1.root, 
t2.root);

◦ What can go wrong?
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� A node should be part of one and only one 
tree.
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� The following are sufficient to prove that p(n) is true 
for all n ≥ n0

� ((((iiii) ) ) ) p(n0) is true.
� (ii) (ii) (ii) (ii) for every k>n0, if p(j) is true for all j with n0 ≤ j < 
k, then p(k) is also true.

� Note that we can prove this directly from the Well-
Ordering Principle.
◦ You will do that in the homework 
◦ The proof is almost the same as the proof of ordinary 
induction.

� Also note that ordinary induction is a special case of 
strong induction, in which we only assume the truth 
of p for j=k-1.
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� How do we actually construct a proof by How do we actually construct a proof by How do we actually construct a proof by How do we actually construct a proof by 
strong induction? strong induction? strong induction? strong induction? 
To show that p(n) is true for all n To show that p(n) is true for all n To show that p(n) is true for all n To show that p(n) is true for all n ≥≥≥≥ nnnn0 0 0 0 ::::
◦ Step 0: Believe in the "magic."  
� You will show that it's not really magic at all.  But you 
have to believe.  

� If, when you are in the middle of an induction proof, 
you begin to doubt whether the principle of 
mathematical induction itself is true, you are sunk!  

� So even if you have some trouble understanding the 
proof of the principle of mathematical induction, you 
must believe its truth if you are to be successful in 
using it to prove things.

� How do we actually construct a proof by How do we actually construct a proof by How do we actually construct a proof by How do we actually construct a proof by 
strong induction? strong induction? strong induction? strong induction? 
To show that p(n) is true for all n To show that p(n) is true for all n To show that p(n) is true for all n To show that p(n) is true for all n ≥≥≥≥ nnnn0 0 0 0 ::::

� Step 1 (base case):   Step 1 (base case):   Step 1 (base case):   Step 1 (base case):   Show that p(n0) is true. 
◦ Depending on the nature of the induction step (ii), 
it may also be necessary to show some other base 
cases as well.  
◦ For example, an induction proof involving Fibonacci 
numbers may need two base cases, because the 
recursive part of the Fibonacci definition expresses 
F(n) as the sum of two previous values.
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� How do we actually construct a proof by How do we actually construct a proof by How do we actually construct a proof by How do we actually construct a proof by 
induction? induction? induction? induction? 
To show that p(n) is true for all n To show that p(n) is true for all n To show that p(n) is true for all n To show that p(n) is true for all n ≥≥≥≥ nnnn0 0 0 0 ::::

� Step 2 (induction step)Step 2 (induction step)Step 2 (induction step)Step 2 (induction step)
◦ Let k be any number that is greater than n0.  
� You can't pick some specific k, you have to do this step for a 
generic k that is greater than n0.  

◦ Assume that p(j) is true for all j that are less than k (and 
also ≥ n0, of course).  
◦ This is called the induction assumption, and is akin to 
the assumption that recursive calls to a procedure will 
work correctly.
◦ Then show that p(k) must also be true, using the 
induction assumption somewhere along the way.

� Every integer n≥1 is a product of zero or more prime 
integers

� Proof by strong induction:Proof by strong induction:Proof by strong induction:Proof by strong induction:
� Base case.Base case.Base case.Base case. n=1 is a product of zero prime integers
� Induction step. Induction step. Induction step. Induction step. Let k be an integer that is greater than 1   
The induction assumption is that every positive integer 
smaller than k is a product of prime integers

� We must show that k is a product of prime integers
◦ If k is prime, then clearly k is the product of one prime integer 
◦ Otherwise k is a composite integer:  

� i.e., k = j*m, where integers  j and m are both greater than one

◦ Since j and m are both larger than 1,  j<k and m<k
◦ Thus by the induction assumption, m and j are both products 
of prime integers, and so k = jm is a product of prime integers 

� This would be very difficult to prove using ordinary 
induction
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PreOrder, PostOrder, InOrder, LevelOrder

� Preorder (top-down, depth-first)
◦ root, left, right

� PostOrder (bottom-up)
◦ left, right, root

� InOrder
◦ Left, root, right

� LevelOrder (breadth-first)
◦ Level-by-level, left-to-right within each level
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Figure 18.23
(a) Preorder, (b) postorder, and (c) inorder visitation routes

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss      © 2002  Addison Wesley
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� No one "natural" order for tree iteration.
◦ Four common choices.

� How is the usage of an iterator different than that 
of a simple traversal, such as printPreorderprintPreorderprintPreorderprintPreorder, etc?
◦ constructor, hasNext, next 
◦ Weiss uses a slightly different model:  
� first, isValid, advance, retrieve.

� What are the needed instance variables?
◦ A reference to the tree
◦ A reference to the current node
◦ What else?

� Inorder:Inorder:Inorder:Inorder: How to find first item?
◦ What else do we need to do while we are at it?
◦ PreorderPreorderPreorderPreorder, PostorderPostorderPostorderPostorder.
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� If we did not have to maintain the stack for 
these iterators?

� If we could somehow “tap into” the stack used 
in the recursive traversal?
◦ I.e. Take a “snapshot of that call stack, and restore 
it later when we need it.

◦ This is called a continuationcontinuationcontinuationcontinuation.  .  .  .  

� A big subject in the PLC course.
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� Store in the node info needed to find the next 
node for iterator.  

� We must make sure that this info can be 
updated in constant time whenever we add a 
node to the BST.

� Example: inorder threads – see WA7.

� A Binary Search Tree (BST) is a Binary tree 
with the following additional properties.
◦ The elements are Comparable.

◦ No duplicates are allowed.

◦ If the tree T is non-empty , all elements in T’s left 
subtree are less than the root element.

◦ if the tree T is non-empty, all elements in T’s right 
subtree are greater than the root element.

◦ Both subtrees are BSTs.


