Maximum Contiguous Subsequence Sum

Recap: Problem definition: details

Problem definition: Given a sequence of n integers $A_{1}, A_{2}, \ldots, A_{n}$, $(\mathrm{n} \geq 0$, some numbers may be negative). Find the maximum sum of a consecutive subsequence $\mathrm{S}_{\mathrm{i}, \mathrm{j}}=\sum_{k=i}^{j} A_{k}$. If $\mathrm{i}>\mathrm{j}$ or if all of the numbers $\mathrm{A}_{\mathrm{i}}, \ldots, \mathrm{A}_{\mathrm{j}}$ are negative, we define the sum to be zero. We use the abbreviation $\mathrm{A}_{\mathrm{i}, \mathrm{i}}$ to stand for $\mathrm{A}_{\mathrm{i}}, \ldots, \mathrm{A}_{\mathrm{i}}$. Note that $\mathrm{S}_{\mathrm{i}, \mathrm{i}}$ is the sum of the numbers in $\mathrm{A}_{\mathrm{i}, \mathrm{i}}$.
Examples (from the DS book): What is $\mathrm{S}_{2,4}$?
$\{-2,11,-4,13,-5,2\}$ (maximum subsequence sum is 20),
Can a max-sum subsequence begin with a negative number?
$\{1,-3,4,-\mathbf{2},-\mathbf{1}, \mathbf{6}\} \quad$ (maximum subsequence sum is 7).
When we store the sequence in a Java array, the subscripts begin with 0 .
When we refer to the problem in the abstract here, the subscripts will begin with 1. (because the Weiss DS book does it this way, as do most mathematicians)

```
Recap: Eliminate the most obvious inefficiency, get \(\Theta\left(\mathrm{N}^{2}\right)\)
```

```
for( int i = 0; i < a.length; i++ ) {
```

for(int i = 0; i < a.length; i++) {
int thisSum = 0;
int thisSum = 0;
for(int j = i; j < a.length; j++) {
for(int j = i; j < a.length; j++) {
thisSum += a[j];
thisSum += a[j];
if(thisSum > maxSum) {
if(thisSum > maxSum) {
maxSum = thisSum;
maxSum = thisSum;
seqStart = i;
seqStart = i;
seqEnd = j;
seqEnd = j;
}
}
}
}
}

```
}
```


Observations?

- (3 minutes)
- Walk through
$\circ\{-3,4,2,1,-8,-6,4,5,-2\}$
- Any subsequences you can safely ignore?
- Discuss with another student

```
* Linear-time maximum contiguous subsequence sum algorithm.
* seqStart and seqEnd represent the actual best sequence.
    */
    public static int maxSubSum3( int [ ] a ) {
        int maxSum = 0;
        int thisSum = 0;
        for( int i = 0, j = 0; j < a.length; j++ ) {
            thisSum += a[ j ];
            if( thisSum > maxSum ) {
                maxSum = thisSum;
                seqStart = i;
                seqEnd = j;
                } else if( thisSum < 0 ) {
                i = j + 1;
                thisSum = 0;
            }
        }
        return maxSum;
    }
```


Observation 1

- We noted that a max-sum sequence $A_{i, j}$ cannot begin with a negative number.
- Generalizing this, it cannot begin with a prefix ($A_{i, k}$ with $k<j$) whose sum is negative.
\circ Proof: If $S_{i, k}$ is negative, then $S_{k+1, j}>S_{i, j}$, so $A_{i, j}$ would not be a sequence that produces the maximum sum.

Observation 2

- All contiguous subsequences that border the maximum contiguous subsequence must have negative (or zero) sums.
- Proof: If one of them had a positive sum, we could simply append (or prepend) it to get a sum that is larger than the maximum. Impossible!

Observation 3

For any i , Let $\mathrm{A}_{\mathrm{i}, \mathrm{j}}$ be the first subsequence (starting with A_{i}) whose sum $\mathrm{S}_{\mathrm{i}, \mathrm{j}}$ is negative.

Then for any p and q such that $\mathrm{i} \leq \mathrm{p} \leq \mathrm{j}$ and $\mathrm{p} \leq \mathrm{q}$, either

- $A_{p, q}$ is not a maximum contiguous subsequence of $A_{1}, A_{2}, \ldots, A_{n}$, or
$A_{p, q}$ has the same sum as a maximum contiguous subsequence that has been previously observed.

Proof of observation 3

- If $p=i$, then we are in the case of Observation 1.
- Otherwise $p>i$, and so $S_{i, q}=S_{i, p-1}+S_{p, q}$.
- Since j is the lowest index for which $\mathrm{S}_{\mathrm{i}, \mathrm{j}}<0$, $\mathrm{S}_{\mathrm{i}, \mathrm{p}-1} \geq 0$, and thus $\mathrm{S}_{\mathrm{p}, \mathrm{q}} \leq \mathrm{S}_{\mathrm{i}, \mathrm{q}}$.
- If q > j ,
then (first diagram) Observation 1 says that $A_{i, q}$ is not a maximum contiguous subsequence, and thus neither is $A_{p, q}$.
Otherwise (second diagram) $q<=j$ and $A_{p, q}$ has a sum that's no bigger than sum of already-seen $A_{i, q}$.

Observation 3 (recap)

- For any i , Let $\mathrm{A}_{\mathrm{i}, \mathrm{j}}$ be the first subsequence (starting with A_{i}) whose sum $S_{i, j}$ is negative. Then for any p and q such that $i \leq p \leq j$ and $p \leq q$, either $A_{p, q}$ is not a maximum contiguous subsequence of A_{1}, A_{2}, \ldots, An , or $\mathrm{A}_{\mathrm{p}, \mathrm{q}}$ has the same sum as a maximum contiguous subsequence that has been previously observed.
- Implication of this: If we find that $\mathrm{S}_{\mathrm{i}, \mathrm{j}}$ is negative, we can skip all sums that begin with any of $A_{i}, A_{i+1}, \ldots, A_{j}$, so we can set i to be $j+1$.

New, improved code!

for (int $\mathbf{i}=\mathbf{0}, \mathbf{j}=\mathbf{0} ; \mathbf{j}<\mathbf{a}$ length; \mathbf{j}^{++}) \{
thisSum $+=\mathrm{a}[\mathrm{j}] ;$
if (thissum > maxSum
$\{$
maxSum $=$ thisSum; segstart $=\mathbf{i}$; segEnd $=\mathbf{j}$; \} else if (thissum < 0) 1

$$
\mathbf{i}=\mathbf{j}+\mathbf{1}
$$

$$
\text { thissum }=0 ;
$$

\}
\} Analyze it.

Conclusions

- The first algorithm we think of may be a lot worse than the best algorithm for a problem.
- Improvement sometimes relies on clever ideas.
- Analysis sometimes takes some serious thought.

