Mathematical Induction

What it is?
Why is it a legitimate proof method?
How to use it?

Some Logic Background

- Implication: $\mathrm{A} \rightarrow \mathrm{B}$, where A and B are boolean values. If A, then B
- If it rains today, I will use my umbrella.
- When is this statement true?
- When I use my umbrella
- When it does not rain
- When is it false?
- Only when it rains and I do not use my umbrella.

A	B	A \rightarrow B
T	T	T
T	F	F
F	T	T
F	F	T

Implication: $\mathrm{A} \rightarrow \mathrm{B}$

A	B	A \rightarrow B
T	T	T
T	F	F
F	T	T
F	F	T

- Conclusions:
- If we know that $A \rightarrow B$ is true, and B is false, then A must be ...
Another expression that is equivalent to $A \rightarrow B$:
- $\neg A$ OR B (think about the truth table for $\neg A$ OR B)

What similar expression is equivalent to $\neg(A \rightarrow B)$?

Contrapositive of $A \rightarrow B$

A	B	$\mathrm{A} \rightarrow \mathrm{B}$	$\neg \mathrm{B}$	$\neg \mathrm{A}$	$\neg \mathrm{B} \rightarrow \neg \mathrm{A}$
T	T	T	F	F	T
T	F	F	T	F	F
F	T	T	F	T	T
F	F	T	T	T	T

- $\neg B \rightarrow \neg A$ is called the contrapositive of $A \rightarrow B$
- Notice that the third and sixth columns of the truth table are the same.
- Thus an implication is true if and only if its contrapositive is true.

Contradictions

- If A is a boolean value, the value of the expression A AND \neg A is \qquad . This expression is known as a contradiction.
- Putting this together with what we saw previously, if $B \rightarrow(A$ AND $\neg A)$ is True, what can we say about B ?
- This is the basis for "proof by contradiction".

To show that B is true, we find an A for which we can show that
$\neg B \rightarrow(A$ AND $\neg A)$ is true.
This is the approach we will use in our proof that Mathematical induction works.

The Well-ordering principle

- It's an axiom, not something that we can prove.
- WOP: Every non-empty set of non-negative integers has a smallest element.
- Note the importance of "non-empty", "non-negative", and "integers".
- The empty set does not have a smallest element.

A set with no lower bound (such as the set of all integers) does not have a smallest element.

- In the statement of WOP, we can replace "positive" with "has a lower bound"
Unlike integers, a set of rational numbers can have a lower bound but no smallest member.
- Assuming the well-ordering principle, we can prove that the principle of mathematical induction is true.

Recap: What kind of things do we try to prove via Mathematical Induction?

- In this course, it will be a property of positive integers (or non-negative integers, or integers larger than some specific number).
- A property $\mathrm{p}(\mathrm{n})$ is a boolean statement about the integer n. [p : int \rightarrow boolean]
- Example: $p(n)$ could be " n is an even number".
- Then $p(4)$ is true, but $p(3)$ is false.
- If we believe that some property p is true for all positive integers, induction gives us a way of proving it.

The Principle of Mathematical Induction

- To prove that $\mathrm{p}(\mathrm{n})$ is true for all $\mathrm{n} \geq \mathrm{n}_{0}$:
- Show that $p\left(n_{0}\right)$ is true.
- Show that for all $k \geq n_{0}$,
$p(k)$ implies $p(k+1)$.
I.e, show that whenever $p(k)$ is true, then $p(k+1)$ is true also.

Why does induction work?
 (Informal look)

- To prove that $\mathrm{p}(\mathrm{n})$ is true for all $\mathrm{n} \geq \mathrm{n}_{0}$:
- Show that $p\left(n_{0}\right)$ is true.
- Show that for all $k \geq n_{0}$, $p(k)$ implies $p(k+1)$.
I.e, if $p(k)$ is true, then
$p(k+1)$ is true also

From Ralph
Grimaldi's discrete math book.

Why does induction work?

- Next we focus on a formal proof of this, because:
- Some people may not be convinced by the informal one
- The proof itself illustrates some important proof techniques

Proof that induction works (Overview)

, Let p be a property (p : int \rightarrow boolean).
, Hypothesis:
a) $p\left(n_{0}\right)$ is true.
b) For all $k \geq n_{0}, p(k)$ implies $p(k+1)$. I.e, if $p(k)$ is true, then $p(k+1)$ is true also

- Desired Conclusion: If n is any integer with $\mathrm{n} \geq \mathrm{n}_{0}$, then $p(n)$ is true. If we can prove this, then induction is a legitimate proof method.
- Proof that the conclusion follows from the hypothesis:
- Let S be the set $\left\{n \geq n_{0}: p(n)\right.$ is false $\}$.
, It suffices to show that S is empty.
, We do it by contradiction.
Assume that S is non-empty and show that this leads to a contradiction.

Proof that induction works

Hypothesis:
a) $p\left(n_{0}\right)$ is true.
b) For all $k \geq n_{0}, p(k)$ implies $p(k+1)$.

Desired Conclusion: If n is any integer with $n \geq n_{0}$, then $p(n)$ is true. If this conclusion is true, induction is a legitimate proof method.
, Proof: Assume a) and b). Let S be the set $\left\{n \geq n_{0}: p(n)\right.$ is false $\}$. We want to show that S is empty; we do it by contradiction.

Assume that S is non-empty. Then the well-ordering principle says that S has a smallest element (call it $s_{\text {min }}$).
We try to show that this leads to a contradiction.
Note that $p\left(s_{\min }\right)$ has to be false. Why?
$\mathrm{s}_{\text {min }}$ cannot be n_{0}, by hypothesis (a). Thus $\mathrm{s}_{\min }$ must be $>\mathrm{n}_{0}$. Why?
Thus smin- $1 \geq n_{0}$. Since $s_{\text {min }}$ is the smallest element of $S, s_{m i n}-1$
cannot be an element of S. What does this say about $p\left(s_{\min }-1\right)$? $p\left(s_{\min }-1\right)$ is true.
By hypothesis (b), using the $k=s_{\min }-1$ case, $p\left(s_{\min }\right)$ is also true. This contradicts the previous statement that $p\left(s_{\min }\right)$ is false.

- Thus the assumption that led to this contradiction (S is nonempty) must be false.
Therefore S is empty, and $p(n)$ is true for all $n \geq n_{0}$.

Next time ...

- We will use the Principle of Mathematical induction to prove some properties of integers.

Big-Oh, Big-Omega, BigTheta
 Review of the concepts

Asymptotic analysis

- We only really care what happens when N (the size of a problem) gets large.
- Is the function linear? quadratic? etc.

Figure 5.1
Running times for small inputs

Figure 5.2
Running times for moderate inputs

Figure 5.3
Functions in order of increasing growth rate

Function	NAME
c	Constant
$\log N$	Logarithmic
$\log ^{2} N$	Log-squared
N	Linear
$N \log N$	Quadratic
N^{2}	Cubic
N^{3}	Exponential
2^{N}	

Informal definitions

- $f(N)$ is $O(g(N))$ means ...
- $f(N)$ is $\Omega(g(N))$ means ...
- $f(N)$ is $\Theta(g(N))$ means ...
- Relationships between
- $f(x)=3 x-2$ and $g(x)=x$
- $f(x)=x$ and $g(x)=x^{2}$.

Toward a formal definition of bigoh
The definition has a lot in common with a particular limit definition.

Formal definition of $\lim _{x \rightarrow \infty} f(x)=a$
Formal definition of $f(N)$ is $O(g(N))$ is similar:
And so is the definition of $f(N)$ is $\Omega(g(N))$

- The "Big-Oh" Notation
- given functions $\mathrm{f}(n)$ and $\mathrm{g}(n)$, we say that $\mathrm{f}(n)$ is $\boldsymbol{O}(\mathrm{g}(n))$ if and only if $\mathrm{f}(n) \leq \mathrm{cg}(n)$ for $n n_{0}$
- c and n_{0} are constants, $\mathrm{f}(n)$ and $\mathrm{g}(n)$ are functions over non-negative integers

Big Oh examples

- For this discussion, assume that all functions have nonnegative values, and that we only care about $x \geq 0$.
For any function $g(x), O(g(x))$ is a set of functions.
We say that a function $f(x)$ is (in) $\mathrm{O}(\mathrm{g}(\mathrm{x})$) if there exist two positive constants c and x_{0} such that for all $\mathrm{x} \geq \mathrm{x}_{0}, \mathrm{f}(\mathrm{x}) \leq \mathrm{c} \mathrm{g}(\mathrm{x})$. Rewrite using \forall and \exists notation
- All that we must do to prove that $f(x)$ is $O(g(x))$ is produce a pair of numbers c and $x 0$ that work for that case.
- $f(x)=x, g(x)=x^{2}$.
- $f(x)=x, g(x)=3 x$.
- $f(x)=x+12, g(x)=x$. We can choose $c=3$ and $x_{0}=6$, or $c=4$ and $x_{0}=4$.
- $f(x)=x+\sin (x)$
- $f(x)=x^{2}+\operatorname{sqrt}(x)$

Answers to examples

- For this discussion, assume that all functions have nonnegative values, and that we only care about $x \geq 0$.
For any function $g(x), O(g(x))$ is a set of functions We say that a function $f(x)$ is (in) $O(g(x))$ if there exist two positive constants c and x_{0} such that for all $x \geq x_{0}, f(x) \leq c g(x)$. Rewrite using \forall and \exists notation
- So all we must do to prove that $f(x)$ is $O(g(x)$ is produce two such constants.
- $f(x)=x+12, g(x)=? ? ?$.
$\mathrm{g}(\mathrm{x})=\mathrm{x}$. Then $\mathrm{c}=3$ and $\mathrm{x}_{0}=6$, or $\mathrm{c}=4$ and $\mathrm{x}_{0}=4$, etc.
- $f(x)=x+\sin (x): g(x)=x, c=2, x_{0}=1$
- $f(x)=x^{2}+\operatorname{sqrt}(x): g(x)=x^{2}, c=2, x 0=1$
- Simple Rule: Drop lower order terms and constant factors.
- $7 n-3$ is $\boldsymbol{O}(n)$
- $8 n^{2} \log n+5 n^{2}+n$ is $\boldsymbol{O}\left(n^{2} \log n\right)$
- Special classes of algorithms:
- logarithmic: $\quad \boldsymbol{O}(\log n)$
- linear $\boldsymbol{O}(n)$
- quadratic $\quad \boldsymbol{O}\left(n^{2}\right)$
- polynomial $\quad \boldsymbol{O}\left(n^{\mathrm{k}}\right), \mathrm{k} \geq 1$
- exponential $\boldsymbol{O}\left(\mathrm{a}^{n}\right), n>1$
- "Relatives" of the Big-Oh
$-\Omega(\mathrm{f}(n))$: Big Omega
$-\Theta(\mathrm{f}(n))$: Big Theta

Limits and asymptotics

- Consider the limit

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}
$$

- What does it say about asymptotics if this limit is zero, nonzero, infinite?
- We could say that knowing the limit is a sufficient but not necessary condition for recognizing big-oh relationships.
- It will be sufficient for most examples in this course.
- Challenge: Use the formal definition of limit and the formal definition of big-oh to prove these properties.

Apply this limit property to the following pairs of functions

1. N and N^{2}
2. $N^{2}+3 N+2$ and N^{2}
3. $N+\sin (N)$ and N
4. $\log N$ and N
5. $N \log N$ and N^{2}
6. N^{a} and N^{n}
7. a^{N} and $b^{N}(a<b)$
8. $\log _{\mathrm{a}} \mathrm{N}$ and $\log _{b} \mathrm{~N}(\mathrm{a}<\mathrm{b})$
9. N ! and N^{N}

Big-Oh Style

- Give tightest bound you can

- Saying that $3 \mathrm{~N}+2$ is $\mathrm{O}\left(\mathrm{N}^{3}\right)$ is true, but not as useful as saying it's $\mathrm{O}(\mathrm{N})$ [What about $\Theta\left(\mathrm{N}^{3}\right)$?]
- Simplify:
- You could say:
- $3 n+2$ is $O(5 n-3 \log (n)+17)$
- and it would be technically correct...
- But $3 n+2$ is $O(n)$ is better
- But... if I ask "true or false: $3 n+2$ is $O\left(n^{3}\right)$ ", what's the answer?
- True!
- There may be "trick" questions like this on assignments and exams.
- But they aren't really tricks, just following the big-Oh definition!

