Growable array analysis
 Continued

Growable array exercise

- Doubling each time: Assume that $\mathrm{N}=5\left(2^{\mathrm{k}}\right)+1$.
- Total \# of array elements copied:

k	N	\#copies
0	6	5
1	11	
2	21	
3	41	
4	81	
k	$=5\left(2^{k}\right)+1$	

Growable array exercise

- Doubling each time: Assume that $\mathrm{N}=5\left(2^{\mathrm{k}}\right)+1$.
- Total \# of array elements copied:

K	N	\#copies
0	6	5
1	11	$5+10$
2	21	
3	41	
4	81	
k	$=5\left(2^{k}\right)+1$	

Growable array exercise

- Doubling each time: Assume that $\mathrm{N}=5\left(2^{\mathrm{k}}\right)+1$.
- Total \# of array elements copied:

k	N	\#copies
0	6	5
1	11	$5+10$
2	21	$5+10+20$
3	41	
4	81	
k	$=5\left(2^{k}\right)+1$	

Growable array exercise

- Doubling each time: Assume that $\mathrm{N}=5\left(2^{\mathrm{k}}\right)+1$.
- Total \# of array elements copied:

K	N	\#copies
0	6	5
1	11	$5+10$
2	21	$5+10+20$
3	41	$5+10+20+40$
4	81	$5+10+20+40+80$
k	$5\left(2^{k}\right)+1$	$? ? ?$

- Simplify the sum as a closed-form expression in terms of K.
- Then express the result in terms of N .

Growable array exercise

- Adding one each time:
- Total \# of array elements copied:

\mathbf{N}	\#copies
6	5
7	$5+6$
8	$5+6+7$
9	$5+6+7+8$
10	$5+6+7+8+9$
N	

- Simplify the sum as a closed-form expression.

Average overhead cost of adding an additional string to the array:
 - In the doubling case
 - In the add-one case
 - Conclusions?

Mathematical Induction

What it is?
Why is it a legitimate proof method?
How to use it?

Important Sets of Integers

- Z all integers (whole numbers)
- Z^{+}the positive integers
- Z^{-}the negative integers
- N Natural numbers: non-negative integers

Note that some people define Natural numbers as Z $^{+}$

Getting to be good at Mathematical Induction

- For some of you, that will take a lot of time, many explanations, and many examples.
- We will do a few simple induction problems in class
- Then some for homework, WA3.
- After that, I will have one or two on each of several written assignments.
- More and more they will be to prove something about the things we are studying.
And probably at least one induction problem on each exam.

Mathematical Induction What's it all about? (Outline of the next slides)

- Most of the time our intuition is good enough so we don't have to resort to formal proofs of things. But sometimes ...
- What kind of thing do we try to prove via induction?
- What is the approach? (How does it work?)
- Why does this really prove the infinite set of statements that we want to prove?
Start with the Well-ordering Principle proof of Mathematical Induction Principle by contradiction.

What kind of things do we try to prove via induction?

- In this course, it will be a property of positive integers (or non-negative integers, or integers larger than some specific number).
- A propertyp(n) is a boolean statement about the integer n. [p: int \rightarrow boolean]
- Example: $p(n)$ could be " n is an even number".
- Then $p(4)$ is true, but $p(3)$ is false.
- If we believe that some property p is true for all positive integers, induction gives us a way of proving it.

What is the approach?
 (How does it work?)

- To prove that $\mathrm{p}(\mathrm{n})$ is true for all $\mathrm{n} \geq \mathrm{n}_{0}$:
- Show that $p\left(n_{0}\right)$ is true.
- Show that for all $\mathrm{k} \geq \mathrm{n}_{0}$,
$p(k)$ implies $p(k+1)$.
I.e, show that whenever $p(k)$ is true, then $p(k+1)$ is true also.

Why does induction work?
(Informal look)

- To prove that $\mathrm{p}(\mathrm{n})$ is true for all $\mathrm{n} \geq \mathrm{n}_{0}$:
- Show that $p\left(n_{0}\right)$ is true.
- Show that for all $k \geq n_{0}$, $p(k)$ implies $p(k+1)$.
I.e, if $p(k)$ is true, then $p(k+1)$ is true also

From Ralph Grimaldi's discrete math book.

Why does induction work?

- Next we focus on a formal proof of this, because:
Some people may not be convinced by the informal one
The proof itself illustrates an important proof technique

The Well-ordering principle

- It's an axiom, not something that we can prove.
- WOP: Every non-empty set of non-negative integers has a smallest element.
- Note the importance of "non-empty", "non-negative", and "integers".
- The empty set does not have a smallest element.

A set with no lower bound (such as the set of all integers) does not have a smallest element.

- In the statement of WOP, we can replace "positive" with "has a lower bound"
- Unlike integers, a set of rational numbers can have a lower bound but no smallest member.
- Assuming the well-ordering principle, we can prove that the principle of mathematical induction is true.

