6/6/2010

Mathematical Review

Many of my Color slides

» were produced by Michael Goodrich and Roberto
Tomassia, to go with their Data Structures and
Algorithms in JAVA book, which is on the
recommended reading list for the course.

» are mainly here for your reference. We will only
dwell on one if you ask about it.

T(n)

n=4 G

it oot

Running Times

» Algorithms may have different t/ime
complexity on different data sets

» What do we mean by "Worst Case" time
complexity?

» What do we mean by "Average Case" time
complexity?

» What are some application domains where
knowing the Worst Case time complexity
would be important?

Average Case and Worst Case

7

------------------- worsl-case

} average-case

- - - - - - === besl-case

=

»d
=
17

Running Time

ms

| ms

A B C D E F G

Input Instance

6/6/2010

Quick Math Review 0

* Floor
| x]= the largest integer < X
* Ceiling

[x]= the smallest integer>x

In java.lang.Math, there are static
methods £loor () and ceil ().

P

Math review 1

* Summations
- general definition:

é JU) = fs)+ fs+ D+ f(s+2)+...+ f(1)

i=ys%

- where f'is a function, s is the start index, and 7 1s
the end index

P

6/6/2010

« Summations

- general definition: M at h reVI eW 2
{
v i) = fs)+ fls+ 1)+ fls+2)+ ..+ f(1)

- where f'is a function, s is the start index, and ¢ is
the end index))) ;
* Geometric progression: f{i) =a

You will - given an integer # =0 and a real number 0 <a # 1
show this .) |t

by — P Sd=ltata +..+td'= -
induction i~ 0 [—a

later.

- geometric progressions exhibit exponential growth

6 .
Exercise: What is 2.3 ?
=2
(use the above formula)

Math Review 3

*You will probably use a geometric
series sum in the analysis of the
growable array algorithm, which
you will do shortly.

6/6/2010

Math Review 4

* Arithmetic progressions:

- An example

N
n .
+
i=1+2+3+...+n=" - L
i=1 =
40
Exercise: E:l

i=21
(Do it by the formula)

Math Review 5 - a visual
proof

Ei:l+2+3+...+n:
i=1

5
n +n
]

- two visual representations

h |

ntl

; ;
9] ~
|
- o
-
O U s 7

6/6/2010

An example where this sum is
relevant

Selection sort

for (i=n-1; i>0; i--) {
find the largest element among alo] ... a[i] ;
exchange the largest element with ali] ;
}
*How many comparisons of array elements are done?
How many times are array elements copied?

(When you think you have the answers,
compare with a partner)

More Math Review 1

- properties of exponentials:

a(b+c) _ abac

abc — (ab)c

ab/a® = a(b-®)
log,b
R c*log,b

6/6/2010

6/6/2010

More Math Review 2

* Logarithms and Exponents
- properties of logarithms:
IOgb(X}-’) - lOng + logby
logp(x/y) = logpx - logpy
logpx™ = atlogpx

log. x
- od
IOSbE—

log,b

Practice with Exponentials and logs
(Do these with a friend after class, not to turnin)

Simplify: Note that log x (without a specified) base means log,x.
Also, log n is an abbreviation for log(n).

1. log (2 nlogn) S. logyn

2. log(n/2) 6. 22logn

3. log (sqrt (n)) 7. n323logn

4. log (log (sqrt(n))) 8. if N=23k. 1, solve for k.

Where do logs come from in algorithm analysis?

6/6/2010

Growable array analysis

Growable array exercise

» From pages 41-43 of Weiss DS.
» Read Strings from a text file (one per line) and
place them into an array.
» We don't know in advance how many strings there
will be.
» Start with an array of size 5 and grow it as needed
(via calls to resize()).
- Can we just add elements onto the end of an existing array?
» We want to measure the overhead involved.
- If we insert N Strings altogether, how many times do we
have to copy an array element during all of the calls to
resize()?

P

public class ReadStrings { ~// Edited for brevity
public static void main{ String [] args) {
String [] array = getStrings():
for(int 1 = 0; 1 < array.length: i++)
System.out .println(array[1]):
¥
/7 Read an unlimited number of String. return a String []
public static String [] getStrings() { Magic .
Buf feredReader in = new BufferedRe incantation for
new InputStreamReader4Sv=tem.in)): H;ﬁﬁ#‘a‘“"m‘
String [] array = new String[5]; 9
int itemsRead = 0; riginal arr ize =
String oneline: D[R e Sleds = 2
— Read however many input lines there are.
Crow wvhile((oneline = in.readLine()) != null) {
when 1f{ itemsRead == array.length)
array = resize(array, array.length * 2):
necessary array[itemsRead++] = oneline;
} catch(IOException e) { 7% details omnitted %*/ }

return resize(array, itemsRead):

How does resize () work?
What is the main "overhead cost" of resizing?

6/6/2010

