Mathematical Review

Many of my Color slides

- were produced by Michael Goodrich and Roberto Tomassia, to go with their Data Structures and A/gorithms in JAVA book, which is on the recommended reading list for the course.
, are mainly here for your reference. We will only dwell on one if you ask about it.

Running Times

- Algorithms may have different time complexity on different data sets
- What do we mean by "Worst Case" time complexity?
- What do we mean by "Average Case" time complexity?
- What are some application domains where knowing the Worst Case time complexity would be important?

Average Case and Worst Case

Quick Math Review 0

- Floor

$$
\lfloor x\rfloor=\text { the largest integer } \leq x
$$

- Ceiling

$$
\lceil x\rceil=\text { the smallest integer } \geq x
$$

-In java. lang. Math, there are static methods floor () and ceil().

Math review 1

- Summations
- general definition:
$\sum_{i=s}^{t} f(i)=f(s)+f(s+1)+f(s+2)+\ldots+f(t)$
- where f is a function, s is the start index, and t is the end index
- Summations
- general definition:

Math review 2

$\sum_{i=s}^{t} f(i)=f(s)+f(s+1)+f(s+2)+\ldots+f(t)$

- where f is a function, s is the start index, and t is the end index
- Geometric progression: $f(i)=a^{i}$

You will $\quad-$ given an integer $n \geq 0$ and a real number $0<a \neq 1$ show this
by
induction
later.

- geometric progressions exhibit exponential growth

Exercise: What is $\sum_{i=2}^{6} 3^{i}$?
(use the above formula)

Math Review 3

- You will probably use a geometric series sum in the analysis of the growable array algorithm, which you will do shortly.

Math Review 4

- Arithmetic progressions:
- An example

$$
\sum_{i=1}^{n} i=1+2+3+\ldots+n=\frac{n^{2}+n}{2}
$$

Exercise: $\sum_{i=21}^{40} i$
(Do it by the formula)

Math Review 5 - a visual proof
$\sum_{i=1}^{n} i=1+2+3+\ldots+n=\frac{n^{2}+n}{2}$

- two visual representations

An example where this sum is relevant

Selection sort

```
for (i=n-1; i>0; i--) {
find the largest element among a[0] ... a[i];
exchange the largest element with a[i];
}
```

-How many comparisons of array elements are done?
-How many times are array elements copied?
(When you think you have the answers, compare with a partner)

More Math Review 1

- properties of exponentials:

$$
\begin{aligned}
& \mathrm{a}^{(\mathrm{b}+\mathrm{c})}=\mathrm{a}^{\mathrm{b} \mathrm{a}^{\mathrm{c}}} \\
& \mathrm{a}^{\mathrm{bc}}=\left(\mathrm{a}^{\mathrm{b}}\right)^{\mathrm{c}} \\
& \mathrm{a}^{\mathrm{b} / \mathrm{a}^{\mathrm{c}}=\mathrm{a}^{(\mathrm{b}-\mathrm{c})}} \\
& \mathrm{b}=\mathrm{a}^{\log _{\mathrm{a}} \mathrm{~b}} \\
& \mathrm{~b}^{\mathrm{c}}=\mathrm{a}^{\mathrm{c}^{*} \log _{\mathrm{a}} \mathrm{~b}}
\end{aligned}
$$

More Math Review 2

- Logarithms and Exponents
- properties of logarithms:

$$
\begin{aligned}
& \log _{b}(x y)=\log _{b} x+\log _{b} y \\
& \log _{b}(x / y)=\log _{b} x-\log _{b} y \\
& \log _{b} x^{\alpha}=\alpha \log _{b} x \\
& \log _{b} x=\frac{\log _{a} x}{\log _{a} b}
\end{aligned}
$$

Practice with Exponentials and logs
(Do these with a friend after class, not to turn in)
Simplify: Note that $\log x$ (without a specified) base means $\log _{2} x$. Also, $\log \mathrm{n}$ is an abbreviation for $\log (\mathrm{n})$.

1. $\log (2 n \log n)$
2. $\log (n / 2)$
3. $\log (\mathbf{s q r t}(n))$
4. $\log (\log (\operatorname{sqrt}(n)))$
5. $\log _{4} n$
6. $2^{2 \log n}$
7. $n^{2} 2^{3 \log n}$
8. if $N=2^{3 k}-1$, solve for k.

Where do logs come from in algorithm analysis?

Growable array analysis

Growable array exercise

- From pages 41-43 of Weiss DS.
- Read Strings from a text file (one per line) and place them into an array.
- We don't know in advance how many strings there will be.
- Start with an array of size 5 and grow it as needed (via calls to resize()).
Can we just add elements onto the end of an existing array?
- We want to measure the overhead involved.
- If we insert N Strings altogether, how many times do we have to copy an array element during all of the calls to resize()?

