4.3 Binary Search 135

b. Answer the same question for decreasing arrays.

. Solve the average-case recurrence for quicksort.

. Design an algorithm to rearrange elements of a given array of n real num-
bers so that all its negative elements precede all its positive elements. Your
algorithm should be both time- and space-efficient.

. The Dutch flag problem is to rearrange any array of characters R, W, and
B (red, white, and blue are the colors of the Dutch national flag) so that all
the R’s come first, the W’s come next, and the B’s come last. Design a linear
in-place algorithm for this problem.

. Implement quicksort in the language of your choice. Run your program on
a sample of inputs to vefify the theoretical assertions about the algorithm’s

efficiency.

. Nuts and bolts You are given a collection of n bolts of different widths and
n corresponding nuts. You are allowed to try a nut and bolt together, from
which you can determine whether the nut is larger than the bolt, smaller than
the bolt, or matches the bolt exactly. However, there is no way to compare
two nuts together or two bolts together. The problem is to match each bolt to
its nut. Design an algorithm for this problem with average-case efficiency in
©(n log n). [Raw91], p. 293

Binary Search

Binary search is a remarkably efficient algorithm for searching in a sorted array. It
works by comparing a search key K with the array’s middle element A[m]. If they
match, the algorithm stops; otherwise, the same operation is repeated recursively
for the first half of the array if K < A[m], and for the second half if K > Alm]:

K
¢
A[0]... A[m —1] A[m] Alm+1]... Aln —1].
search here if search here if
K <A[m] K>A[m]

As an example, let us apply binary search to searching for K =70 1n the array

IE 114|27\31|39|42|55|70l74|81l85\93|9§1

I

134 Divide-and-Conquer

Given the importance of quicksort, there have been persistent efforts over the
years to refine the basic algorithm. Among several improvements discovered by
researchers are: better pivot selection methods (such as the median-of-three par-
titioning that uses as a pivot the median of the leftmost, rightmost, and the middle
element of the array); switching to a simpler sort on smaller subfiles; and recur-
sion elimination (so-called nonrecursive quicksort). According to R. Sedgewick
[Sed98], the world’s leading expert on quicksort, these improvements in combi-
nation can cut the running time of the algorithm by 20%-25%.

We should also point out that the idea of partitioning can be useful in ap-
plications other than sorting. In particular, it underlines a fast algorithm for the
important selection problem discussed in Section 5.6.

Exercises 4.2

1. Apply quicksort to sort the list éfg
F X1 M i Pin Lo B o

in alphabetical order. Draw the tree of the recursive calls made.

2. For the partitioning procedure outlined in Section 4.2:

a. Prove that if the scanning indices stop while pointing to the game element,
i.e.,i = j, the value they are pointing to must be equal to p.

b. Prove that when the scanning indices stop, j cannot point to an element
more than one position to the left of the one pointed to by i.

¢. Why is it worth stopping the scans after encountering an element equal to
the pivot?

3. Is quicksort a stable sorting algorithm?

4. Give an example of an array of n elements for which the sentinel mentioned
in the text is actually needed. What should be ifs value? Also explain why a
single sentinel suffices for any input.

5. For the version of quicksort given in the text:
a. Are arrays made up of all equal elements the worst-case input, the best-
case input, or neither?
b. Are strictly decreasing arrays the worst-case input, the best-case input, or
neither?

6. a. For quicksort with the median-of-three pivot selection, are increasing ar-
rays the worst-case input, the best-case input, or neither?

this was bubblesort and, by an amazing stroke of luck, my second thought was Quicksort.” It is hard to
disagree with his overall assessment: “I have been very lucky. What a wonderful way to start a career
in Computing, by discovering a new sorting algorithm!” [Hoa%6]

4.2 Quicksort 129

b. Set up a recurrence relation for the number of key comparisons made by
mergesort on best-case inputs and solve it for n = 2k,

¢. Set up a recurrence relation for the number of key moves made by the
version of mergesort given in Section 4.1. Does taking the number of key
moves into account change the algorithm’s efficiency class?

9. Let A[0..n — 1]be an array of n distinct real numbers, A pair (A[7], A[j])is said
to be an inversion if these numbers are out of order, i.e.,i < j but A[i] > Alj]
Design an O (n log n) algorithm for counting the number of inversions,

10. One can implement mergesort without a recursion by starting with merging
adjacent elements of a given array, then merging sorted pairs, and so on. Im-
plement this bottom-up version of mergesort in the language of your choice.

11. Tromino puzzle A tromino is an L-shaped tile formed by 1-by-1 adjacent
squares. The problem is to cover any 2"-by-2" chessboard with one missing
square (anywhere on the board) with trominos. Trominos should cover all the
squares except the missing one with no overlaps.

Design a divide-and-conquer algorithm for this problem,

4.2 Quicksort

Quicksort is another important sorting algorithm that is based on the divide-and-
conquer approach. Unlike mergesort, which divides its input’s elements according
to their position in the array, quicksort divides them according to their value,
Specifically, it rearranges elements of a given array A[0..n — 1] to achieve its
partition, a situation where all the elements before some position s are smaller
than or equal to A[s]and all the elements after position s are greater than or equal
to Als]:

A[0]... A[s —1] A[s] A[s+ 1]... Aln —1]

all are <A[s] all are >A[s]

28 Divide-and-Conquer

of extra storage the algorithm requires. Though merging can be done in place,
the resulting algorithm is quite complicated and, since it has a significantly larger
multiplicative constant, the in-place mergesort is of theoretical interest only.

Exercises 4.1

1. a. Write a pseudocode for a divide-and-conquer algorithm for finding a po-
sition of the largest element in an array of » numbers.

b. What will be your algorithm’s output for arrays with several elements of
the largest value?

¢. Set up and solve a recurrence relation for the number of key comparisons E:E‘g
made by your algorithm. ala?

d. How does this algorithm compare with the brute-force algorithm for this
problem?
2. a. Write a pseudocode for a divide-and-conquer algorithm for finding values
of both the largest and smallest elements in an array of n numbers.

b. Set up and solve (for n = 2K a recurrence relation for the number of key
comparisons made by your algorithm.

¢. How does this algorithm compare with the brute-force algorithm for this
problem?
3. a. Write a pseudocode for a divide-and-conquer algorithm for the exponen-
tiation problem of computing a” where a > 0 and nis a positive integer.

b. Set up and solve a recurrence relation for the number of multiplications
made by this algorithm.

¢. How does this algorithm compare with the brute-force algorithm for this
problem? g PO SR

4. We mentioned in Chapter 2, that logarithm bases are irrelevant in most
contexts arising in the analysis of an algorithm’s efficiency class. Is this true a2
for both assertions of the Master Theorem that include logarithms?

5. Find the order of growth for solutions of the following recurrences.
a. T(n)=4T(n/2)+n, T(H)=1
b. T(n) =4T(n/2) +n% T() =1
¢. T(n)=4T(n/2)+n3 TH=1
6. Apply mergesort to sort the list E, X, A, M, P, L, E in alphabetical order.

7. Is mergesort a stable sorting algorithm?

oo

. a. Solve the recurrence relation for the number of key comparisons made by
mergesort in the worst case. (You may assume that n = 259

c. Gotothe Internet or your library and find a better algorithm for generating
magic squares.

d. Implement the two algorithms—the exhaustive search and the one you
have found—and run an experiment to determine the largest value of »
for which each of the algorithms is able to find a magic square of order »
in less than one minute of your computer’s time.

E@ 10. Famous alphametic A puzzle in which the digits in a correct mathematical

bGla expression, such as a sum, are replaced by letters is calied a cryptarithm; if.
in addition, the puzzle’s words make sense, it is said to be an alphametic.
The most well-known alphametic was published by renowned British puzzlist
H. E. Dudeney (1857-1930):

S END
+ MORE
MONEY

Two conditions are assumed: first, the correspndence between letters and
decimal digits is one-to-one, i.e., each letter represents one digit only and dif-
ferent letters represent different digits; second, the digit zero does not appear
as the left-most digit in any of the numbers. To solve an alphametic means
to find which digit each letter represents. Note that a solution’s uniqueness
cannot be assumed and has to be verified by the solver.

a. Write a program for solving cryptarithms by exhaustive search. Assume
that a given cryptarithm is a sum of two words.

b. Solve Dudeney’s puzzle the way it was expected to be solved when it was
first published in 1924.

SUMMARY

B Brute forceis astraightforward approach to solving a problem, usually directly
based on the problem statement and definitions of the concepts involved.

B The principal strengths of the brute-force approach are wide applicability and
simplicity; its principal weakness is the subpar efficiency of most brute-force
algorithms.

B A first application of the brute-force approach often results in an algorithm
that can be improved with a modest amount of effort.

® The following noted algorithms can be considered as examples of the brute- :,I?'
force approach: 4

Exercises 3.4

1.

3.4 Exhaustive Search 119

a. Assuming that each tour can be generated in constant time, what will be
the efficiency class of the exhaustive-search algorithm outlined in the text
for the traveling salesman problem?

b. If this algorithm is programmed on a computer that makes 1 billion ad-
ditions per second, estimate the maximum number of cities for which the
problem can be solved in

i. one hour.
ii. 24-hours.
iii. one year.
iv. one century.

Outline an exhaustive-search algorithm for the Hamiltonian circuit problem.

Outline an algorithm to determine whether a connected graph represented
by its adjacency matrix has a Eulerian circuit. What is the efficiency class of
your algorithm?

Complete the application of exhaustive search to the instance of the assign-
ment problem started in the text.

Give an example of the assignment problem whose optimal solution does not
include the smallest element of its cost matrix.

Consider the partition problem: given n positive integers, partition them into
two disjoint subsets with the same sum of their elements. (Of course, the prob-
lem does not always have a solution.) Design an exhaustive-search algorithm
for this problem. Try to minimize the number of subsets the algorithm needs
to generate.

Consider the clique problem: given a graph G and a positive integer k, deter-
mine whether the graph contains a cligue of size k, i.e., a complete subgraph
of k vertices. Design an exhaustive-search algorithm for this problem.

Explain how exhaustive search can be applied to the sorting problem and
determine the efficiency class of such an algorithm.

Magic squares A magic square of order n is an arrangement of the numbers

from 1 to n? in an n-by-n matrix, with each number occurring exactly once, so

that each row, each column, and each main diagonal has the same sum.

a. Prove that if a magic square of order » exists, the sum in question must be
equal to n(n? + 1) /2.

b. Design an exhaustive-search algorithm for generating all magic squares of
order n.

10.

3.3 Closest-Pair and Convex-Hull Problems by Brute Force 113

a signal, everybody hurles his or her pie at the nearest neighbor. Assuming
that » is odd and that nobody can miss his or her target, true or false: There
always remains at least one person not hit by a pie [Car79]?

. The closest-pair problem can be posed on the k-dimensional space in which the

Euclidean distance between two points P’ = (x{, ..., x;) and P" = (64 (APPE 1)
is defined as

d(P/, P//) =

What will be the efficiency class of the brute-force algorithm for the k-
dimensional closest-pair problem?

Find the convex hulls of the following sets and identify their extreme points
(if they have any).

a. aline segment
b. asquare
¢. the boundary of a square

d. astraight line

. Design a linear-time algorithm to determine two extreme points of the convex

hull of a set of n > 1 points in the plane.

. What modification needs to be made in the brute-force algorithm for the

convex-hull problem to handle more than two points on the same straight
line?

. Write a program implementing the brute-force algorithm for the convex-hull

problem.

Consider the following small instance of the linear programming problem:

maximize 3x + Sy
subjectto x4+ y<4
x+3y<6
x>0,y=>0.
a. Sketch, in the Cartesian plane, the problem’s feasible region, defined as
the set of points satisfying all the problem’s constraints.
b. Identify the region’s extreme points.

¢. Solve the optimization problem given by using the following theorem: a
linear programming problem with a nonempty bounded feasible region
always has a solution, which can be found at one of the extreme points of
its feasible region.

—<*

112 Brute Force

Second, such a line divides the plane into two half-planes: for all the points in
one of them, ax + by > ¢, while for all the points in the other, ax + by < c. (For
the points on the line itself, of course, ax + by = c.) Thus, to check whether certain
points lie on the same side of the line, we can simply check whether the expression
ax + by — c has the same sign at each of these points. We leave the implementation
details as an exercise.

What is the time efficiency of this algorithm? It is in O(13): for each of
n(n — 1)/2 pairs of distinct points, we may need to find the sign of ax + by — ¢
for each of the other n — 2 points. There are much more efficient algorithms for
this important problem, and we discuss one of them later in the book.

D wduud

1. Can you design a faster algorithm than the one based on the brute-force
strategy to solve the closest-pair problem for n points x, . . ., x, on the real
line?

2. Letx; <x; <--- < x, be real numbers representing coordinates of n villages
located along a straight road. A post office needs to be built in one of these
villages.

a. Design an efficient algorithm to find the post office location minimizing
the average distance between the villages and the post office.

b. Design an efficient algorithm to find the post office location minimizing
the maximum distance from a village to the post office.

3. a. There are several alternative ways to define a distance between two points

Py =(x1, y1) and P, = (x5, y;) in the Cartesian plane. In particular, the
so-called Manhattan distance is defined as

dy (P, Py) = |x1 — x| + |y — yal.

Prove that d), satisfies the following axioms which every distance function
must satisfy:
i. dy(Py, P) > 0 for any two points P; and Py, and dy,(P;, P,) = 0if and
only if P{ = P;
il. dy(Py, Py) =dy (P, P));
iii. dy(Py, Py) <dy(Py, Ps) +dy(Ps, Py) for any P;, Py, and Ps.
b. Sketchall the pointsin the x, y coordinate plane whose Manhattan distance
to the origin (0,0) is equal to 1. Do the same for the Euclidean distance.

¢. True or false: A solution to the closest-pair problem does not depend on
which of the two metrics—dj (Euclidean) or d,, (Manhattan)—is used?

Ezg 4. Odd piefight There aren > 3 people positioned on a field (Euclidean plane)
Ring so that each has a unique nearest neighbor. Each person has a cream pie. At _

3.3 Closest-Pair ang Convex-Hull Problems by Brute Force 107

the same cell may be used no more than once. Write a computer program for
solving this puzzle.

3.3 Closest-Paijr and Convex-Huyl| Problems

by Brute Force

Standard Euclidean distance

d(Pn Pj) =4/ (x; — xj)z + (- yj)z-

The brute-force approach to solving this problem leads to the following ob-
vious algorithm: compute the distance between each pair of distinct points and
find a pair with the smallest distance, Of course, we do not want to compute the
distance between the same pair of points twice. To avoid doing so, we consider
only the pairs of points (P, P;) for which ; < Ji

106

Brute Force

Ezg 10.

- As shown in Section 2.1, the average number of key comparisons made by

sequential search (without a sentinel. under standard assumptions about its
inputs) is given by the formula

C(wg(n) == @ =~ P,

where p is the probability of a successful search. Determine, for a fixed n,
the values of p (0 < p <1) for which this formula yields the largest value of
Cave(n) and the smallest value of Cove@).

- Gadget testing A firm wants to determine the highest floor of its n-story

headquarters from which a gadget can fall with no impact on the gadget’s
functionality. The firm has two identical gadgets to experiment with. Design
an algorithm in the best efficiency class you can to solve this problem.,

- Determine the number of character comparisons that will be made by the

brute-force algorithm in searching for the pattern GANDHT in the text
THERE_IS_MORE_TO_LI FE_THAN_INCREASING_ITS_SPEED

(Assume that the length of the text—it is 47 characters long—is known before
the search starts.)

- How many comparisons (both successful and unsuccessful) will be made by

the brute-force algorithm in searching for each of the following patterns in
the binary text of one thousand zeros?

a. 00001 b. 10000 ¢ 01010

- Give an example of a text of length n and a pattern of length m that constitutes

aworst-case input for the brute-force string-matching algorithm. Exactly how
many character comparisons will be made for such input?

. Write a visualization progtam for the brute-force string-matching algorithm.
- In solving the string-matching problem, would there be any advantage in

comparing pattern and text characters right-to-left instead of left-to-right?

. Consider the problem of counting, in a given text, the number of substrings

that start with an A and end with a B. (For example, there are four such
substrings in CABAAXBYA.)

a. Design a brute-force algorithm for this problem and determine its effi-
ciency class.

b. Design a more efficient algorithm for this problem [Gin04].

Word find A popular diversion in the United States, “word find,” asks the
player to find each of a given set of words in a square table filled with single
letters. A word can read horizontally (left or right), vertically (up or down),
or along a 45 degree diagonal (in any of the four directions), formed by
consecutively adjacent cells of the table; it may wrap around the table’s
boundaries, but it must read in the same direction with no zigzagging. The
same cell of the table may be used in different words, but, in a given word,

