CHAPTER 5

Divide and Conquer ,

A divide-and-conquer algorithm proceeds as follows. If the problem is
small, it is solved directly. If the problem is large, the problem is divided
into two or more parts called subproblems. Each subproblem is then solved
after which solutions to the subproblems are combined into a solution to the
original problem. The divide-and-conquer technique is also used to solve the
subproblems; that is, the subproblems are further divided into subproblems,
which are divided into subproblems, and so on. Eventually, small problems
result that can be solved directly. The solutions to the various subproblems
are then combined into a solution to the original problem. Recursion is of-
ten used to solve a subproblem. As an example, an array of two.or more
elements can be sorted by using a divide-and-conquer algorithm in which
the original array is divided into two parts. If either part consists of one
element, that part is already sorted. Parts containing two or more elements
are sorted recursively. Finally, the two sorted arrays are merged into a single
sorted array. The sorting algorithm is called mergesort and is discussed in
Section 5.2. .

We begin in Section 5.1 by introducing the divide-and-conquer technique
with a tiling problem. After discussing mergesort (Section 5.2), we turn to
a geometry problem that has an elegant divide-and-conquer solution (Sec-
tion 5.3). The chapter concludes with a divide-and-conquer algorithm for
multiplying matrices (Section 5.4), which is asymptotically faster than the
algorithm derived directly from the definition of matrix multiplication.

In succeeding chapters, we will again have occasion to use the divide-and-
conquer technique (see, e.g., Section 6.2, Quicksort, and Section 6.5, Selec-
tion).

5.1 A Tiling Problem

A right tromino, hereafter called simply a tromino, is an object made up
of three 1 x 1 squares, as shown in Figure 5.1.1. We call an n x n board,
with one 1 x 1 square (on the unit grid lines) removed, a deficient board




Chapter 5 / Divide and Conquer

i

Figure 5.1.1 A tromino.

—

oard. The missing square is shown in black.

Figure 5.1.2 A deficient 8 X8 b
ks along the sides is one unit.

The gap between successive mar

problem can then be stated as follows: Given a
power of 2, tile the board with trominoes.
t covering of the

(see Figure 5.1.2). Our tiling

deficient n x n board, where nis a
By a tiling of the board with trominoes, we mean an exac

board by trominoes without having any of the trominoes over
or extend outside the board.

Figure 5.1.3 shows a tiling of

lap each other

Example 5.1.1. a deficient 8 x 8 board with
trominoes.

Figure 5.1.3 Atiling of a deficient 8 x 8 board with trominoes.

Suppose that we are given a deficient n x n board, where 1 is a power of
2 If n = 2, we can tile the board because the board is a tromino (see Figure
5.1.1). Suppose that n > 2. A divide-and-conquer approach to solving the
tiling problem begins by dividing the original problem (tile the n x n board)
into subproblems (tile smaller boards). We divide the original board into four
n/2xn/2 subboards [see Figure 5.1.4(a)]. Since n is a power of 2, n/2is
also a power of 2. The subboard that contains the missing square [in Figure
5.1.4(a), the upper-left subboard] is a deficient n/2xmn/2 subboard, so we
can recursively tile it. The other three n/2xn/2 subboards are not deficient,
so we cannot directly recursively tile these subboards. However, if we place

a tromino as shown in Figure

5.1.4(b) so that each of its 1 x 1 squares lies in




5.1 / A Tiling Problem

n

(a) b)

Figure 5.1.4 Using divide and conquer to tile a deficient n x n board with
trominoes. In (a), the original n x n board is divided into four n/2 x n/2
subboards. The subboard containing the missing square is then tiled recur-
sively. A tromino is placed as shown in (b) so that each of its 1 x 1 squares
lies in one of the three remaining subboards. These 1 x 1 squares are then
considered as missing. The remaining subboards are then tiled recursively.

one of the three remaining subboards, we can consider each of these 1 x 1
squares as missing in the remaining subboards. We can then recursively tile
these deficient subboards. Our tiling problem is solved.

Example 5.1.2. Figure 5.1.5 shows how our algorithm tiles a deficient 4 x 4
board.

B B

(a) (b) (c)

Figure 5.1.5 Tiling the deficient 4 x 4 board shown in (a). First, the board
is divided into four 2 x 2 subboards as shown in (b). The subboard that
contains the missing square is recursively tiled; in this case, the deficient
2 x 2 board is a tromino. Next, we place a tromino as shown in (c) so that
each of its 1 x 1 squares lies in one of the three remaining subboards. Each
of these 1 x 1 squares is considered as missing in the remaining subboards.
We can then recursively tile these deficient subboards. Again, each of the
deficient 2 x 2 boards is a tromino, so the problem is solved. a

Example 5.1.3. Figure 5.1.6 (next page) shows how our algorithm tiles a de-
ficient 8 x 8 board. ' ]




216

Chapter 5 / Divide and Conquer

(a) (b) ©

LT
(d) (e)

Figure 5.1.6 Tiling the deficient 8 x 8 board shown in (a). First, the board

is divided into four 4 x 4 subboards as shown in (b). The subboard that

contains the missing square is recursively tiled as shown in (c). Next, we

place a tromino as shown in (d) so that each of its 1 x 1 squares lies in one

of the three remaining subboards. Each of these 1 x 1 squares is considered

as missing in the remaining subboards. We can then recursively tile each of
these deficient 4 x 4 subboards as shown in (e). The problem is solved.

We formally state our tiling algorithm as Algorithm 5.1.4.

Algorithm 5.1.4 Tiling a Deficient Board with Trominoes. This algorithm
constructs a tiling by trominoes of a deficient n xn board where n is a power

of 2.

Input Parameters: 7, a power of 2 (the board size);
the location L of the missing square

Output Parameters: None

tile(n,L) {
if(n==2) {
// the board is a right tromino T
tile with T
return

}

divide the board into four n/2 x n/2 subboards

place one tromino as in Figure 5.1.4(b)
// each of the 1 x 1 squares in this tromino is considered as missing

let m, mo, m3, my denote the locations of the missing squares




5.1 / A Tiling Problem 217

tile(n/2, m,)
tile(n/2, my)
tile(n/2, ms)
tile(n/2, my)

}

In Algorithm 5.1.4, “tile with T” can be interpreted in many ways. It
could mean printing the location and orientation of T, or it could mean
drawing T using a graphics system (see Exercises 5.1 and 5.2). In any case,
we assume that “tile with T” takes constant time. We also assume that di-
viding the board, placing the tromino as in Figure 5.1.4(b), and computing
mi, my, msz, my each takes constant time. It follows that the time required
by Algorithm 5.1.4 is proportional to the number of trominoes placed on the
board. Since the number of 1 x 1 squares on a deficient n x n board is n? - 1
and each tromino occupies three squares, Algorithm 5.1.4 places

n2-1
3

trominoes on the board. Therefore, the time required by Algorithm 5.1.4
is ®(n?).

If we can tile a deficient n x n board, where n is not necessarily a power
of 2, then the number of squares, n? — 1, must be divisible by 3. Chu and
Johnsonbaugh (see Chu, 1986) showed that the converse is true, except when
n is 5. More precisely, if n # 5, any deficient n X n board can be tiled with
trominoes if and only if 3 divides n2 — 1 (see Exercises 11 and 12). Some
deficient 5 x 5 boards can be tiled and some cannot (see Exercises 6 and 7).

Some real-world problems can be modeled as tiling problems. One exam-
ple is the VLSI layout problem—the problem of packing many components
on a computer chip (see Wong, 1986). (VLSI is short for Very Large Scale
Integration.) The problem is to tile a rectangle of minimum area with the de-
sired components. The components are sometimes modeled as rectangles
and L-shaped figures similar to trominoes. In practice, other constraints are
imposed such as the proximity of various components that must be inter-
connected and restrictions on the ratios of width to height of the resulting
rectangle.

=0(n?)

Exercises

In Exercises 1-4, show how Algorithm 5.1.4 tiles the given deficient board.

1S. 2.

i
i
{
|
{




