Homework 10 (69 points total) Updated for summer 2012

Problems for enlightenment/practice/review (not to turn in, but you should think about them):

How many of them you need to do serious work on depends on you and your background. I do not want to make everyone do one of them for the sake of the (possibly) few who need it. You can hopefully figure out which ones you need to do.
6.1.1 [6.1.2] (closest numbers in an array with pre-sorting)
6.1.2 [6.1.3] (intersection with pre-sorting)
6.1.8 [6.1.10] (open intervals common point)
6.1.11 (anagram detection)
6.2.8ab (Gauss-Jordan elimination)
6.3.9 (Range of numbers in a $2-3$ tree)
6.5.3 (efficiency of Horner's rule)
6.5.4 (example of Horner's rule and synthetic division)
7.1.7 (virtual initialization)

Problems to write up and turn in:

1. (10) 6.1 .5 [6.1.7] (to sort or not to sort)
2. (10) 6.2 .8 c (compare Gaussian elimination to Gauss-Jordan)
3. (6) 6.3 .7 (2-3 tree construction and efficiency)
4. (20)
5. (10) 6.4 .12 [6.4.11]

(spaghetti sort)

6. (3) 6.5.10 [6.5.9] (Use Horner's rule for this particular case?)
7. (10) 7.1.6
(sum of heights of nodes in a full tree) In this problem, we consider completely full binary trees with N nodes and height H (so that $\mathrm{N}=2^{\mathrm{H}+1}-1$)
(a) (5 points) Show that the sum of the heights of all of the nodes of such a tree can be expressed as $\sum_{k=0}^{H} k 2^{H-k}$.
(b) (10 points) Prove by induction on H that the above sum of the heights of the nodes is N-H-1. You may base your proof on the summation from part (a) (so you don't need to refer to trees at all), or you may do a "standard" binary tree induction based on the heights of the trees, using the definition that a non-empty binary tree has a root plus left and right subtrees. I find the tree approach more straightforward, but you may use the summation if you prefer.
(c) (3 points) What is the Θ for the sum of the depths of all of the nodes in such a tree?
(d) (2 points) How does the result of parts (b) and (c) apply to Heapsort analysis?

Example of height and depth sums: Consider a full tree with height 2 (7 nodes).
Heights: root:2, leaves: 0 . Sum of all heights: $1 * 2+2 * 1+4 * 0=3$.
Depths: root: 0 , leaves: 2 . Sum of all depths: $1^{*} 0+2 * 1+4 * 2=10$.
. The tree is binary

- The tree is a search tree (i.e. that the elements are in some particular order)
- The tree is balanced in any way.

The tree for this problem is simply a connected directed graph with no cycles and a single source node (the root).

