MA/CSSE 473 - Design and Analysis of Algorithms

Homework 13 (95 points total)

(summer: Drop Box) These are to be turned in as hard copy. You can write solutions out by hand, or write them on your computer and print them. If there are multiple pages, please staple them together.

When a problem is given by number, it is from the textbook. 1.1.2 means "problem 2 from section 1.1".

Problems for enlightenment/practice/review (not to turn in, but you should think about them):

How many of them you need to do serious work on depends on you and your background. I do not want to make everyone do one of them for the sake of the (possibly) few who need it. You can hopefully figure out which ones you need to do.
8.1.1 (Compare and contrast dynamic programming with divide-and-conquer)
8.1.4 (Space efficiency of dynamic programming for Binomial coefficients)
8.2.2 (Time efficiency of Warshall's Algorithm)
8.3.1 (Practice optimal BST calculation)
8.3.2 (Time and space efficiency of optimal BST calculation)
8.3.9 (Include unsuccessful searches in optimal BST calculation)

Problems to write up and turn in:

1. (5) 8.1.5 (Order of growth of $\mathrm{C}(\mathrm{n}, \mathrm{k})$) For (iii), Stirling's approximation may help you to simplify.
2. (10) 8.1.10 (World Series odds)
3. (5) 8.2.3 (Warshall with no extra memory use)
4. (10) 8.2.4 (More efficient Warshall inner loop)
5. (50) Optimal BST problem described below.
6. (10) 8.3.3 (Optimal BST from root table)
7. (5) 8.3.10a (Matrix chain multiplication) Also think about parts (b) and (c), which may appear on a later assignment or exam.

Optimal BST Dynamic Programming Problem (problem \#5 in Summer, 2010)

In a binary search tree, the key of each node in the left subtree is smaller than the key of the root, and the key of each node in the right subtree is larger than the root. The same property holds for each subtree. Section 8.3 discusses a dynamic programming algorithm to find an optimal static tree if only successful searches are taken into account. In class (Summer: See PowerPoint slides for days 31 and 33: http://www.rose-hulman.edu/class/csse/csse473/201040/Slides/) we discussed (using a slightly different notation) a modified algorithm that takes unsuccessful searches into account.

Suppose that we have a static set of N keys $\mathrm{K}_{1}, \mathrm{~K}_{2}, \ldots, \mathrm{~K}_{\mathrm{n}}$ (in increasing order), and that we have collected statistics about the frequency of searches for each key and for items in each "gap" between keys (i.e. each place that an unsuccessful search can end up).

For $\mathrm{i}=1 \ldots \mathrm{n}$, let a_{i} be the frequency of searches that end successfully at K_{i}.
For $\mathrm{i}=1 \ldots \mathrm{n}-1$, let b_{i} be the frequency of unsuccessful searches for all "missing keys" that are between Ki and $\mathrm{K}_{\mathrm{i}+1}$ (also, b_{0} is the frequency of searches for keys smaller than K_{1}, and b_{n} is the frequency for keys that are larger than K_{n}).

We build a BST T with the N keys, $\mathrm{K}_{1}, \ldots, \mathrm{~K}_{\mathrm{n}}$. Let x_{i} be the depth of the node containing K_{i}, and let y_{i} be the depth of the "external node" that represents the gap between K_{i} and K_{i+1} (where y_{0} and y_{n} are the depths of the leftmost and rightmost external nodes of T). Recall that the depth of a tree's root is 0 . The optimal tree for the given keys and search frequencies is one that minimizes the weighted path length $\mathrm{W}(\mathrm{T})$, where W is defined by

$$
W=\sum_{i=1}^{N} a_{i}\left[1+x_{i}\right]+\sum_{i=0}^{N} b_{i} y_{i}
$$

For example, in class we considered the following data:

i	$\mathrm{K}_{\text {i }}$	a_{i}	b_{i}
0			0
1	A	32	34
2	E	42	38
3	I	26	58
4	O	32	95
5	U	12	21

If we choose to build the BST with I as the root, E and O as I's children, A as E 's child, and U as O 's child, then $\mathrm{W}=948$, and the average search length is $948 / 390=2.43$ (you should verify this, to check your understanding of the formula for W). It turns out that this tree is not optimal.

In class we discussed (with a slightly different notation) a dynamic programming algorithm that finds a tree that minimizes W for any set of n keys and $2 n+1$ associated frequencies. It uses an alternate, recursive, formulation of W :
(a) (10) Let T be a non-trivial BST. If T is empty, then $\mathrm{W}(\mathrm{T})=0$. Otherwise T has a root and two subtrees T_{1} and T_{r}. Then $\mathrm{W}(\mathrm{T})=\mathrm{W}\left(\mathrm{T}_{1}\right)+\mathrm{W}\left(\mathrm{T}_{\mathrm{r}}\right)+\operatorname{sum}\left(a_{i}, \mathrm{i}=1 . . \mathrm{n}\right)+\operatorname{sum}\left(b_{i}, \mathrm{i}=0 . . \mathrm{n}\right)$. Show by induction that this recursive definition of $\mathrm{W}(\mathrm{T})$ is equivalent to the summation definition given above. [The recursive definition is used in the provided algorithm].
(b) (5) The algorithm and a Python implementation are provided, along with a table of final values for the above inputs. Use the information that table to draw the optimal tree.
(c) (10) What is the big-theta running time for the algorithm? Show your computations that led you to this conclusion
(d) (25) (This is a challenging problem) Find a way to improve the given algorithm so that it has a smaller big-theta running time, and show that it really is smaller.

