CSSE463 Image Recognition 



Lab 6: K-means clustering


Outcome:

Implement a simple k-means clustering algorithm to segment images by color. Note that Matlab has a built-in kmeans function, which you cannot use; it’s your job to implement this.
Report Grading Rubric:
	Score
	Meaning
	Description

	10
	Exemplary
	Report exceeded expectations. Complete, well-written and presented, and particularly insightful answers. Worth posting. 

	9
	Very Good
	Complete, well-written and presented, and insightful.

	8
	Satisfactory
	Complete. Writing, presentation, and insights are reasonable.

	7
	Ordinary
	Minor detail missing, or writing weak. 

	6
	
	

	5
	Deficient
	Basically complete, but didn't demonstrate full understanding of the material.

	4
	
	

	3
	Unsatisfactory
	Incomplete or last-minute attempt.

	2
	
	

	1
	
	

	0
	Not submitted
	


Deliverables:

Complete script (+helper functions as desired) I can run to check your:

Randomized means

iterative portion finds clusters

images colored correctly with mean of each cluster
Writeup:
original image, and 1 output image each for 3 different values of k, with an explanation of how the algorithm worked for each.

Overall Directions:

1. Start with a low-resolution image, even less than 10x10, as you are developing the program so you can debug more easily (every pixel in such a small matrix fits in the Matlab output window without wrapping). (My soccer image was 480 x 640, so I imresized by a factor of 1/80 to get a 6x8 image.)

[Off on a tangent about resizing: 

An alternative to using Matlab’s resize is to first blur the image using a Gaussian filter, then subsample. You can subsample an image (say, taking every 40th pixel) by writing:

step = 40;

img = img(1:step:size(img,1), 1:step:size(img,2),:);

You can subsample without blurring first, but the results won’t be visually pleasing.] 

2. Choose random means. They are each 3D (like the individual pixels). You can randomize by doing:

k = 5;

seed = 0; % or any fixed integer, for debugging. 
rand('state', seed);

means = rand(k,3); % creates a k-by-3 matrix of random numbers
I fix the seed so that the results are repeatable, and you will too while debugging, but of course you wouldn’t use this seed in release code. 

3. Write the iterative portion of the algorithm, as discussed in class. 
Due to time constraints, I’m allowing the following simplifications:

a. You can compute distances in RGB color-space.

b. You can iterate a fixed number of times (like 10) rather than testing for convergence.

c. You are allowed to use some loops (I couldn’t get rid of all of them easily myself.) Note: you might find Matlab’s squeeze and reshape commands helpful, if you are ambitious about removing loops.
5. To obtain the final display of the image, color each pixel according to the mean of the cluster to which it belongs (i.e., the color of the closest mean).

6. Repeat on a higher-resolution image (perhaps still 120 x 160 or lower, since your loops will likely lead to a slow algorithm) for 3 different values of k. Please choose a value that clearly isn’t big enough (like 2 or 3), one value that should capture most colors in the original image, and one value in the middle. Save each image. The visual results should confirm that the algorithm is working. 
For each output image, describe why the algorithm appears to be working. (Or not… if you get a case where you see fewer than k means, that is especially interesting - discuss what you think happened algorithmically.) Then discuss the relationship between the three output images.
