CSSE463 Image Recognition 


Lab 5: Support Vector Machines


Objective:

1. Learn how to work with the SVM toolbox written by Anton Schwaighofer.
Report Grading Rubric:
	Score
	Meaning
	Description

	10
	Exemplary
	Report exceeded expectations. Complete, well-written and presented, and particularly insightful answers. Worth posting. 

	9
	Very Good
	Complete, well-written and presented, and insightful.

	8
	Satisfactory
	Complete. Writing, presentation, and insights are reasonable.

	7
	Ordinary
	Minor detail missing, or writing weak. 

	6
	
	

	5
	Deficient
	Basically complete, but didn't demonstrate full understanding of the material.

	4
	
	

	3
	Unsatisfactory
	Incomplete or last-minute attempt.

	2
	
	

	1
	
	

	0
	Not submitted
	


Deliverables:

Code: Your modifications to toyProblem.m (and any other functions you write):

Train an SVM from the first set of data (xTrain, yTrain). 

Evaluate and output the class of each point in the test data.

Determine the number of true positives, false negatives, true positives, and false positives, then calculate TPR and FPR from this.

Writeup:

Brief details of the kernel function and parameters you used

A table of the number of true positives, false neg., false pos., and true neg.
Calculated TPR and FPR

The graph of the training data and decision boundary (contour plot).
An explanation of your results. 
Summary:

You will analyze the demo function given with the SVM toolbox to see the syntax for training SVMs and using them to classify other points. You will then train an SVM to classify a new set of data, gaining the opportunity to experiment with different kernel functions and parameters.

Overall Directions:

1. Copy and unzip the svm.zip package in the folder containing these instructions. Unlike neural nets, svms aren’t yet part of the standard MATLAB library, so we’ll use this open-source package.
2. Run the demsvm1() and demsvm2() functions. Ask questions about anything that you don’t understand.

3. Open the demsvm1() function, looking for where it trains the SVM and where it uses it to classify points. Note the usage of svm, svmtrain, and svmfwd. (Help with usage can be found in svm.m, svmtrain.m, and svmfwd.m) Ask questions if you don’t understand something. Note also the labels used for the classes (what are they? I discussed this in class, but this is really important to getting SVMs working correctly. ) 
Now you should be ready to experiment with creating another SVM to classify points from another data set.

4. Open the toyProblem.m script. It uses other functions I wrote to generate one data set for training and one for classification. Please add to the script code to do the following:

a. Train an SVM from the first set of data (xTrain, yTrain). You may use any kernel function you like (although you will need to use a nonlinear one since the data isn’t linearly separable). Document your kernel and parameters in your report. 

Note: x = (x1, x2) is the 2D feature vector, and y is the class (thus, they aren’t just x- and y-coordinates)!
b. Evaluate and output the class of each point in the second set of data (xTest) using the script. By default, it uses 0 as a threshold. (You do not need to vary this to generate an ROC curve for this lab.) 
c. From this output and yTest (the true labels), calculate the # true positives, # false negatives , # false positives, and # true negatives. Report this in a table. Also calculate and report the true positive rate (TPR, or recall) and false positive rate (FPR). [Note, these are numerical results using a single threshold (0), not an ROC curve; you’ll do that for the sunset detector…]
d. Generate the graph of the training data with the contour plot of the decision boundary and copy it to your report. 

e. Explain all your results. Are they reasonable, given the data? Specifically, why doesn’t the classifier achieve 100% accuracy?
Side note: the syntax used in the Matlab neural net toolbox is similar to this toolbox. Though I’m not asking you to use neural nets, you should be able to learn how to use them on your own relatively easily.

