CSSE463 Image Recognition

Lab 3: Edge features
Objectives:

1. Learn how to use scripts and functions
2. Write methods using masks to find edgels in images

Report Grading Rubric:
	Score
	Meaning
	Description

	10
	Exemplary
	Report exceeded expectations. Complete, well-written and presented, and particularly insightful answers. Worth posting.

	9
	Very Good
	Complete, well-written and presented, and insightful.

	8
	Satisfactory
	Complete. Writing, presentation, and insights are reasonable.

	7
	Ordinary
	Minor detail missing, or writing weak.

	6
	
	

	5
	Deficient
	Basically complete, but didn't demonstrate full understanding of the material.

	4
	
	

	3
	Unsatisfactory
	Incomplete or last-minute attempt.

	2
	
	

	1
	
	

	0
	Not submitted
	

Deliverables to submit to dropbox:

Lab report

Explain the 2 forms of matrix multiplication

Submit your guess at a 5x5 matrix that approximates a Gaussian filter

Then explain any differences between it and the “true” Gaussian.
Your original image and all 6 output images, inline.

professionalism: followed directions: format, naming, submitted to dropbox, high quality writing.
Code (.m files submitted for all your functions and scripts).
Your sobel .m function
A .m script that calls the sobel function on your image, scales and displays the 6 results using imtool, and saves them to appropriate file names.
At this point, I’ll expect you to keep updating your MATLAB quick reference guide as you see fit, but won’t ask for you to submit it again.

Step-by-step Directions:
I. Writing scripts (5-10 min; optional if you’ve used in past)
A script is just a collection of Matlab commands, stored in a file so you can use it again. The file must have the format <file>.m Start the script editor by choosing File/New…m-file. Type in commands here to load an image of your choice and convert it to grayscale. Save your file as testScript.m.

Run the file from the interpreter by typing the name of script (without the .m), e.g.,

>>testScript Be sure you are in the same directory as the script. You can also run the script by pressing the run button or F5.
You may get errors, in which case you can fix them. Some people write scripts by entering a list of commands in the interpreter, fixing them as they go, then copying them into the script for later use. Note that all variables declared in the script are visible in the Matlab Workspace. Display the grayscale image you created.
II Writing functions (3 min; optional if you’ve used functions in the past)
A Matlab function follows the same naming convention as scripts. The file itself has the format (I show an example for foo.m):

function retValue = foo(param1, param2, …)

…
%calculations go here…

retValue = …;

Note all we need to do is assign the value of the value to be returned (without an explicit return statement. Any variables declared in the function have local scope (and thus will not be available from the workspace.
Parameters are call-by-value. To return multiple pieces of data, return them in an array:

function [retValue1, retValue2, …] = foo(param1, param2, …)

III. Whole-matrix operations on images (5 min)
Recall from Lab 1 that you can find the sum of two matrices, B and C, by using

>>A = B + C

There are two choices for multiplication. Type these in and explain the answers you get:

>>A = [1 2; 3 4]; B = [5 6; 7 8]

>>C = A * B;

% does what?
>>C = A .* B;

%(notice the dot) does what?
This dot can be used similarly for division and exponentiation: Try:

>>C = A ./ 2;

>>C = A .^ 2;

>> C = sqrt(A);

IV. Applying a filter or mask to an image (10 min)
I apply a box filter to an image by using the built-in function filter2. Example:
smoothImage = filter2(filt, grayImg, ‘same’)

Recall that the box filter sums the pixels in a small neighborhood and divides by the sum of the pixels. This can be implemented with a filter of 1’s, then normalized to sum to 1 (so, for a 3x3 mask, I divide each by 9). Note that if they summed to more than 1, the overall effect would be to brighten the image, which we don’t want.) Try:

>> filt = ones(3,3)/9; % equivalent to [1/9 1/9 1/9; 1/9 1/9 1/9; 1/9 1/9 1/9]
>>smoothImg = filter2(filt, grayImg); % applies the filter
>> imtool(img); imtool(uint8(smoothImg));

Now write your own 5x5 filter, gfilter, that does 2D Gaussian filtering (you can guess the approximate values of the Gaussian, given what you know about its shape). Create it now, declaring it and initializing it with your guessed values: gfilter = [---put your values here, with semicolons between rows---].

Once you’ve created it, view it using >>mesh(gfilter)

After you’ve thought about the values of your filter, compare its shape against the “true” Gaussian:

trueGaussian= fspecial('gaussian', 5)

>>mesh(trueGaussian);

How did you do?

Submit the 5x5 matrix what you used as a filter (it won’t be perfect, that’s OK). Then explain any differences between it and the “true” Gaussian.
Finally, experiment briefly with using it for smoothing the image on your own.
V. Writing your own mask-based edge detection method (30 min)
Note that you aren’t using Matlab’s edge function here. Write your own function called sobel that takes a grayscale image as input and returns 6 matrices, as discussed in class:
1. The output of the horizontal-edge finding masks (found by using filter2 to apply the Sobel filters I presented in class)
2. The output of the vertical-edge finding masks (ditto)
3. The sum of the 2 outputs

4. The raw magnitude of the gradient (computed from 1. and 2.)

5. The raw direction of the gradient (use atan2, not atan, see help for why)

6. The directions, with pixels in the direction image corresponding to weak magnitude edges zeroed out, as I demo’ed in class.

Note that because of what we learned above, you do not need to loop over rows and columns to calculate the gradient from the 2 partial derivatives (difference filters): you can do exponentiation, summation, and square roots of the whole matrix, as shown above. This is much quicker than using loops!
Therefore, for finding the magnitude given sobel images A and B, I should not see in your code:
for r = 1:size(image,1)

for c = 1:size(image, 2)

c = sqrt(A^2 + B^2)

end

end

Now (if you haven’t so far), create a single script that reads an image, converts it to grayscale, calls the sobel function on your image, displays the 6 results using imtool, and saves them to appropriate file names. You can just copy the commands from MATLAB’s Command History if you like.
The resulting matrices are indeed the correct results of applying magnitude and gradient. However, sometimes they are hard to see.

Now modify your script to scale the images for display purposes only so they can be shown better. The edge magnitudes may be low, for example:

 >> imtool(uint8(horizontalEdges * 8)); % the 8 was chosen trial-and-error
Also, the direction image should fill the range [0,255] (instead of [-,]. This will require and shift and scale. Use pi for in Matlab. The image might look funny, but that’s expected if you consider what you are viewing. Hint: a direction of 0 (default for non edges) will map to 127 (medium-gray).

Note that if you wanted to do further calculations on the edge matrices, you’d use the unscaled versions, not the scaled ones. Therefore, the script, not the sobel function, should do the scaling.

Please submit the script and function you wrote, and all the images (original and 6 outputs).
Final reminder this term: you must cite the source of your image (the URL if on-line).
Optional: Modify your script to find the edges of a different image. (You need not save the results or the image; I just want you to gain an appreciation for the reusability of scripts and functions)

More about Matlab:

Global variables are defined as follows:

Declared in function1 (or a script),

global foo

foo = 17;

Used in function2 (or a script)

global foo

foo = foo + 10;

