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A b s t r a c t  
An efficient ray tracing method is presented for calculating 

interreflections between surfaces with both diffuse and specular com- 
ponents.  A Monte  Carlo technique computes  the indirect contribu- 
t ions to i l luminance at  locations chosen by the rendering process. 
The indirect i l luminance values are averaged over surfaces and used 
in place of a cons tant  " a m b i e n t "  term. Il luminance calculations are 
made only for those areas part icipating in the  selected view, and the 
results are stored so tha t  subsequent  views can reuse common 
vMues. The  density of the  calculation is adjusted to main ta in  a 
cons tan t  accuracy, permit t ing  less populated portions of the  scene to 
be computed  quickly. Successive reflections use proportionally fewer 
samples,  which speeds the  process and provides a natural  limit to 
recnrsion. The technique can also model diffuse t ransmission and 
i l lumination from large area sources, such as the sky. 

General Terms: Algori thm, complexity. 

Addit ional  Keywords  and Phrases:  Caching, diffuse, i l luminance, 
interreflection, luminance,  Monte Carlo technique, radiosity, ray 
tracing, rendering, specular.  

1. Introduct ion 
The realistic computer  rendering of a geometric model requires 

the faithful Simulation of light exchange between surfaces. Ray 
tracing is a simple and elegant approach tha t  has produced some of 
the most  realistic images to date. The s tandard ray tracing method 
follows light backwards from the viewpoint to model reflection and 
refraction from specular  surfaces, as well as direct diffuse illumina- 
tion and shadows [15]. Accuracy has  been improved with better 
reflection models [4] and stochastic sampling techniques [6]. Unfor- 
tunate ly ,  the  t r ea tmen t  of diffuse interreflection in conventional ray 
tracers has been limited to a cons tant  " a m b i e n t "  term.  This  
approximation fails to produce detail in shadows, and precludes the 
use of ray tracing where indirect l ighting is important .  

We present  a method for modeling indirect contr ibut ions to 
i l lumination using ray tracing. A diffuse interreflection calculation 
replaces the ambient  term directly, wi thout  affecting the formulas or 
algori thms used for direct and specular components .  Efficiency is 
obtained with an appropriate mix of view-dependent  and view- 
independent  techniques.  
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2. Interreflection in R a y  Tracing 
Ray tracing computes  mult iple reflections by recursion (Fig- 

ure 1). A t  each level, the  calculation proceeds as follows: 

1. Intersect  the  ray with scene geometry-. 

2. Compute  direct contr ibutions from light sources. 

3. Compute  specular contr ibutions from reflecting surfaces. 

4. Compute  diffuse contr ibutions from reflecting surfaces. 

The complexity of the calculation is closely related to the difficulty 
of step 1, and the number  of t imes it is executed as determined by 
the propagat ion (recursion) of steps 2 through 4. Step 2 requires as 
many  new rays as there are light sources, bu t  the rays do not pro- 
pagate so there is no growth in the  calculation. Step 3 can result in 
a few propagat ing rays  tha t  lead to geometric growth if unchecked.  
Methods for efficient specular component  computa t ion  have been 
described by [8], [5] and [14]. The diffuse contributions in step 4, 
however, require many  (>100 )  propagat ing rays tha t  quickly 
overwhelm a conventional calculation. Most  methods  simply avoid 
this step by subs t i tu t ing  a cons tant  ambient  term. Our  goal is to 
find an efficient method for comput ing  diffuse interreflection and 
thereby complete the ray tracing solution. We s ta r t  with a sum- 
mary  of previous work in this  area. 

An  advanced ray tracing method developed by Ka j iya  follows 
a fixed n u m b e r  of pa ths  to approximate global i l lumination at each 
pixel [8]. Using hierarchical " impor tance"  sampling to reduce vari- 
ance, the  i l lumination integral is computed  with fewer rays  than  a 
naive calculation would require. This  brings ray tracing closer to a 
full solution wi thout  compromising its basic properties: separate  
geometric and l ighting models, view-dgpendence for efficient render- 
ing of specular  effects, and pixel-independence for parallel implemen- 
tations.  Unfor tunately ,  the method is not  well suited to calculating 
diffuse interreflection, which still requires hundreds  of samples.  A 
high-resolution image simply has  too many  pixels to compute  global 
i l lumination separately a t  each one. 

The radiosity method,  based on radiative heat  transfer,  is well 
suited to calculating diffuse interreflection [12][10][2]. Surfaces are 
discretized into patches  of roughly uniform size, and the energy 
exchange between patches  is computed  in a completely view- 
independent  manner .  The method  makes  efficient use of visibility 
information to compute  multiple reflections, and sample points  are 
spaced so tha t  there is sufficient resolution without  making the cal- 
culation intractable.  In areas where i l lumination changes rapidly, 
the patches  can be adaptively subdivided to mainta in  accuracy [3]. 
However, the  s tandard  radiosity method  models only diffuse sur- 
faces, which limits the realism of its renderings. Immel extended the 
approach to include non-diffuse environments,  adding bidirectional 
reflectance to the energy equations [7]. Unfortunately,  the view- 
independent  solution of specular  interreflection between surfaces 
requires samp]ing radiated directions over very smal] (approaching 
pixel-sized) surface patches.  The resulting computa t ion  is intract-  
able for all bu t  the  s implest  scenes. 

© 1988 ACM-0-89791-275-6/88/008/0085 $00.75 

85 



SIGGRAPH '88, Atlanta, August 1-5, 1988 

Incoming ray 
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1. Ray intersection with surface 
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3. Rays to compute specular 
component 
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2. Rays to compute direct 
component 

Incoming ray 

4. Rays to compute diffuse 
component 

F i g u r e  1: The  four steps of ray tracing. 

A combined ray trueing and radiosity approach was designed 
by Wallace to take advan tage  of the complementary  properties of 
the two techniques [13]. Wallace divides energy t ranspor t  into four 
" m e c h a n i s m s : "  diffuse-diffuse, specular-dlffuse, dlffuse-specular, and 
specular-specular.  He then proceeds to account  for most  of these 
interact ions wi th  clever combinat ions  of ray tracing and radioslty 
techniques.  Unfor tunate ly ,  there are really an infinite n u m b e r  of 
t ranspor t  mechanisms,  such as specular-specular-diffuse, which are 
neglected by his calculation. The generalization Wallace suggests  
for his approach is equivalent  to view-~ndependcnt ray tracing, 
which is even more expensive than  general radiosity [7]. 

3. Diffuse Indirect  I l luminat ion  
Our  development  of an efficient ray tracing solution to diffuse 

interrefleetion is based on the following observations: 

• Because reflecting surfaces are widely distr ibuted,  the compu- 
tat ion of diffuse indirect i l lumination requires m a n y  sample 
rays.  

• The result ing "indirect  i l luminance"  value t is view- 
independent  by the  Lamber t i an  assumpt ion  [9]. 

• The indirect i l luminance tends  to change slowly over a surface 
because the direct componen t  and its associated shadows have 
already been accounted for by step 2 of the ray tracing calcu- 
lation. 

For the sake of efficiency, indirect i l luminance should not  be recalcu- 
lated at  each pixel, bu t  should ins tead be averaged over surfaces 
from a small  set of computed  values. Comput ing  each value might  
require many  samples,  bu t  the  number  of values would not  depend 
on the  n u m b e r  of pixels, so high resolution images could be pro- 
duced efficiently. Also, since i l luminance does not  depend on view, 
the values could be reused for many  images. 

How can we benefit f rom a view-independent  calculation in the 
inherently view-dependent  world of ray tracing? We do not  wish to 
l imit or burden the  geometric model with illuminanc¢ information,  
as required by the surface discretization of the radiosity method. By 
the same token, we do not wish to take view-independence too far, 
calculating illuminance on surfaces that play no part in the desired 
view. Instead we would like to take our large sample of rays only 
whcn and whcrc it is necessary for the accurate computation of an 
image, storing the result in a separate data structure that puts no 
constraints on the surface geometry. 

"aWe define indirect, i t |urnluance ~ ~,he | i s h t  tt~t~c per uul t  a rea  ar r iv ing  a t  a 

surface location via non-self-lumlnous surfaces. 

In our  enhancemen t  of the  basic ray tracing technique,  indirect 
i l luminance values  are cached in the following manner :  

If one or more yalues is s tored near  this point  
Use stored value(s) 

E[se 
Compute  and store new value at  this  point  

The computa t ion  of a new value uses the  "pr imary  me thod . "  The 
technique for finding and using stored values is called the 

"secondary me thod . "  The  pr imary method  is invoked to calculate a 
new value the  first t ime it  is needed, which is when the secondary 
method fails to produce a usable es t imate  from previous calculations 
(Figure 2). Determining the  appropriate range and present ing a 
surface- independent  storage technique are the  two main points  of 
this  paper,  Before we explore these issues, we present  a basic com- 
puta t ion of indirect i l luminance.  

r ¸ . ,  , , _  - . . _ . . . . . .  

F i g u r e  2: I l luminances E1 and E£ were calculated pre- 
viously using the pr imary method.  Tes t  point  A uses an 
average of E1 and EP. Poin t  B uses E~. Poin t  C 
results  in a new indirect i l luminance value at t ha t  loca- 
tion. 
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3.1. T h e  I l l u m i n a n e e  I n t e g r a l  

Illuminanee is defined on a surface as the integral of luminance 
over the projected hemisphere [9]: 

2x 2 fIL O,, OOSOsinOdOd, 
oo 

where O = polar angle 

¢ = azimuthal angle 

L(0, ¢) = luminance from direction (0, ¢) 

In our primary method for calculating indirect illuminance, the 
integral is approximated with a discrete set of sample rays tha t  do 
not intersect light sources. A_ uniform segmented Monte Carlo dis- 
tribution is derived by s tandard transformation methods [11]: 

n 2n  

E ~ - ~ E  E L (Oj, ek ) 
2 n  j = t  k = l  

(k- Yk) 
Ck =~ n 

(2) 

Xj. Y ,  = uniform random numbers between 0 and 1 

2n 2 = total number of  samples 

In general, a better approximation to (1) may be obtained with 
fewer rays using hierarchical sampling techniques I8). The particular 
method chosen does not  affect the remainder of this discussion. 

3.2.  I l l u m l n a n e e  A v e r a g l n g  

The secondary method performs two functions alternatively. 
It either approximates il lumiaance by averaging between primary 
values, or determines tha t  a new primary value is needed. To main- 
tain a constant  accuracy with a min imum of primary evaluations, it 
is necessary to est imate the illuminance gradient on each surface. 
Where the illuminance changes slowly, as in flat open areas, fewer 
values are required. Where there is a large gradient, from high sur- 
face curvature or nearby objects, more frequent primary evaluations 
are necessary. Our  method uses an est imate of the change in i lhmi-  
nance over a surface based on scene geometry. The inverse of this 
change serves as the weight for each primary value during 

averaging. If none of the values has a weight above a specified 
minimum,  the primary method is invoked at tha t  location. 

We introduce a simple model to relate the illuminance gra- 
dient to scene geometry based on the assumption that  narrow con- 
centrations of luminance can be neglected. (Such localized sources 
should be included in the direct component  calculation, since Monte 
Carlo sampling is a bad way to find them.) A surface element is 
located at the center of a sphere (Figure 3). Half of the sphere is 
bright, the  other half is dark. The surface element faces the divid- 
ing line between the two halves. The "split  sphere" has  the largest 
gradient possible for an environment  without concentrated sources. 

°, ) 

R 
v 

F i g u r e  3: The split sphere model, A surface element is 
located at the center of a half-dark sphere. 

An approximate bound to the  change in illuminance in the 
split sphere, e, is given by the first order Taylor expansion for a 
function of two variables: 

3E DE ] 
< .~- (x - Xo) + ~- (~- ~o) (3a) 

Because the illuminanee at  the center is proportional to t h e  pro- 
jected area of the bright half  of the hemisphere, the partial 
differentials with respect to x and ~ are proportional to the partial 
changes in this projection. In terms of z ,  the differential change 

2R Oz 43z OVer the projected area is ~ rR-T, which is - -~ - .  In terms of ~, the 

ratio is ~ rrR~0~ 
z rR~-  , or simply 0f .  Combining these results with the 

triangle inequality, we get: 

< 4 ~  I X-Xol + Eol ~-%ol 
£ - ' ~ R  

(3b) 

Note tha t  the change in il luminance with respect to location is 
inversely proportional to the radius, R ,  while the change with 
respect to orientation does not depend on the sphere geometry. We 
can extend our approximation to more complicated geometries by 
replacing x and ~ with vector-derived values: 

- ~ R o + 

where: ~ ( ~ )  = surface normal at position 

Po = surface element location 

E o = fllmrananee at Po 

R 0 = "average" distance to surfaces at P0 

(4) 

The change in z becomes the distance between two points, and the 
change in ( becomes the  angle between two surface normals. This  
equation is used to est imate the relative change in i l lumiaance for 
any geometry• Both the points  and the  surface normals are deter- 
mined by the ray intersection calculation. R 0 is the harmonic mean 
(reciprocal mean reciprocal) of distances to visible surfaces, which 
can be computed from ray lengths during primary evaluation. 
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The inverse of the estimated error is used in a weighted aver- 
age approximation of illuminance: 

Z Wi (~)  Ei 
E ( F )  i ~  

w i ( F )  
i~s 

(5) 

where: w i (~) = 

E i 

R i 

S 

a 

1 

"~-~" + ~l- g ( ~ ) . ~ ( ~ i )  
R i 

= computed illutrtinance at ~i 

= harmonic mean distance to objects visiblc from ~i 

= {i:wi(~) > lla } 

= user select~J const~,t 

The approximate illuminance, E (P) ,  is given by the weighted mean 
of all "adjacent"  illuminance values. The weight of a value is equal 
to the inverse of its estimated error, without the constant terms tha t  
are valid only for the spl i t~phere  (4/~._and x/2). An itluminance 
value with an error of zero (P~ equal to P )  will have infinite weight. 
All values with an estimated error less than a will be included in 
the set of adjacent illuminances, S .  If S is empty, a new primary 
illuminance value must  be calculated at  ~ .  (An efficient method for 
determining the members of S is given in the next section.) 

The constant a is directly related to the maximum approxima- 
tion error. When the approximation is applied to the split sphere, 
the error is less than 1.4aE, where E is a straight average of Ei 
over 5'. In general, the illuminance gradient may be larger or 
smaller than the split sphere, bu t  it will always be roughly propor- 
tional to a .  It is interesting to note that for a less than or equal to 
1, S will not contain any value farther than the average spacing or 
with a surface normal more than 90 degrees from the test location. 
Intuitively, such a value would be expected to have 100% error. 

In practice, additional tests are required to restrict the values 
included in S .  The ray recursion depth must  be considered so that 
values computed after one or more bounces are not substituted for 
final illuminances. This is easily prevented by keeping separate 
value lists at each recursion level. A different problem arises from 
our generalization of the split sphere model. Equation (4) assumes 
that motion in any direction is equivalent to motion in z .  As a 
result, the set S can include illuminance values that  tie on objects 
shadowing the test point, P (Figure 4). We therefore introduce a 
test to reject illuminanee values that are "in front"  of i f :  

(6) 

If d~(P) is less than zero, then ~,. is in front o f / ~  so the value is 
excluded. 

/ / 
F i g u r e  4: Po  sees few close-by surfaces, so its estimated 
error at ~ is small. But ~ i3 shadowed by the surface 
under/~o, and the true illuminance is different. 

Caching indirect illuminance is simple and efficient. The error 
estimate results in a minimum of primary evaluations and a nearly 
constant accuracy. Sections of the scene that  do not contribute to 
the image, directly or indirectly, are not examined since no rays 
reach them. Areas where the indirect illuminance varies rapidly, 
from changing surface orientation or the influence of nearby objects, 
will have a higher concentration of values. Flat areas without 
nearby influences will have only a few values. Dynamic evaluation 
obviates surface discretization and presampling, so scene representa- 
tion is not restricted. 

Figure 5a shows three colored, textured blocks on a table 
illuminated by a low-angle light source. Figure 5b shows the place- 
ment of indirect illumlnance values. Note that the values crowd 
around inside corners, where surfaces are in close visual contact, and 
outside corners, where the surface curvature is large. Also, the 
space between and immediately surrounding the blocks is more 
densely populated than the background, where only a few values are 
spread over a wide area. This distribution is different from the stan- 
dard radiosity technique, which computes values at grid points on 
each surface. By selecting value locations based on the estimated 
illuminance gradient, a more accurate calculation is obtained with 
fewer samples. 

Averaging illuminance values over surfaces results in lower 
pixel variance than produced by standard ray tracing techniques. 
Figure 5e was produced by a pure Monte Carlo computation that  
used as many rays as the calculation of Figure 5a. The speckling 
results from inadequate integration of the indirect contributions at 
each pixel. Since every pixel requires a separate calculation, only a 
few diffuse samples are possible over the hemisphere. ]f a sample 
happens to catch a bright reflection, the illuminance computed at 
that  point will be disproportionately large. Caching permits a 
better integration to be performed less frequently, thereby obtaining 
a more realistic rendering than is feasible with pixel-independent ray 
tracing. 

3.3 .  I l l u m l n a n c e  S t o r a g e  

For the secondary method to be significantly faster than the 
primary method, we need an efficient technique for finding the 
members of S (Equation 5). Without  placing any restrictions on 
scene geometry, an octrce permits efficient range searching in three 
dimensions [1]. A global cube is identified that encompasses all 
finite surfaces in the scene. When the primary method calculates a 
new indirect illuminanee at a scene location, the global cube is sub- 
divided as necessary to contain the value. Each illuminance, E i , is 
stored in the octree node containing its position, /~i, and having a 
size (side length} greater than twice but  not  more than four times 
the appropriate "valid domain," aR~. This guarantees that  the 
stored illuminance value will satisfy the condition for S in no more 
than eight cubes on its own octree level, and a value with a small 
valid domain will only be examined in close-range searches. Each 
node in the octree will contain a (possibly empty) list of illuminance 
values, and a (possibly nil) pointer to eight children. (A two- 
dimensional analogy is given in Figure 6.) To search the tree for 
values whose valid domain may contain the point P ,  the following 
recumive procedure is used: 

For  each illuminanee value at this node 
I f w e ( P ) > l / a  and di(J~)~O 

Include value 
For each child 

I f /~  is within half the child's size of its cube boundary 
Search child node 

This algorithm will not only pick up the nodes containing ~ ,  but  
will also search nodes having boundaries within half the cube size of 
~ .  In this way, all lists that  might have an illuminance value 
whose valid domain contains /~ will be examined. The worst case 
performance of this algorithm is O (N) ,  where N is the number of 
values. Performance for a uniform distribution is O (log (N)) .  

The scale of the sorting algorithm can be changed so' that  the 
octree cubes are either larger or smaller than the domains of the 
values they contain. If the cubes are smaller, each examined list 
will be more likely to contain usable values. However, many of the 
cubes will be empty. If the cubes are larger, more of the values will 
have to be examined, but less searching through the tree will be 
necessary. In any case, changing the scale does not affect the func- 
tioning of the algorithm, only its performance in a given situation. 
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F igure  5a: Colored blocks with diffuse indirect calcula- 
tion. 

/ f -  

Figure  5b: Blocks with illuminance value locations in 
blue. 

F | g u r e  8: Five indirect illuminance values are shown 
with their respective domains (circles) linked by dotted 
lines to the appropriate nodes (squares). 

F igure  5e: Blocks using conventional ray tracing tech- 
niquee. 

89 



SIGGRAPH '88, Atlanta, August 1-5, 1988 

Writing illuminance values to a file permits their reuse in sub- 
sequent renderings. By reusing old values, the indirect calculation 
will not only proceed more quickly, it will be more accurate since 
the illuminance is already calculated in some areas of the scene. 
Normally, the secondary method takes the estimated error right to 
its tolerance level before calculating a new value. Where the neces- 
sary values are precalculated, the tolerance is never reached because 
all points are within one or more valid domains. 

3.4. Multiple Diffuse Reflections 
It  is often desirable to limit the calculation of diffuse 

reflections separately from the direct and specular components. A 
record is kept of how many diffuse bounces have occurred, and this 
is checked against a user-specified limit. When the limit is reached, 
a constant ambient value is substituted for the calculation. (This 
value can be zero.) 

The first ray traced in a computation with multiple diffuse 
reflections begins a cascade of illuminance values (Figure 7). The 
initial primary evaluation uses many ray samples, and these rays in 
turn produce many more samples, with the last recursion level exhi- 
biting the densest sampling. As the higher reeursion levels become 
filled with primary illuminance values, fewer rays propagate in the 
calculation. The computation of multiple diffuse reflections there- 
fore begins slowly, and speeds up as fewer recursion levels require 
primary evaluation. This process is similar to the "solution" stage 
of a radiosity technique, which calculates energy transfer between all 
surfaces before rendering is possible. Producing different views of 
the same scene is then relatively quick. The thrifty computation of 
multiple views is also present in our method, with an additional sav- 
ings from ignoring surfaces that  do not contribute to the desired 
images. 

In the computation of multiple reflections, a simple optimiza- 
tion reduces the number of samples required for a given accuracy. If 
the mean surface reflectance is 50 percent, twice as much error can 
be tolerated in the calculation of each successive bounce. By 
increasing the value of a by 40 percent and decreasing the Monte 
Carlo sampling by 50 percent, each reflection uses one quarter as 
many rays as the last, with the same contribution to error. The 
total number of sample rays is then a bounded series, which can 
serve as a soft limit to recursion when accuracy is critical. 

m 

4. R e s u l t s  

The accuracy of the secondary method was tested with an 
analytical solution of a sphere resting on an infinite plane with 
seventy percent reflectance, and a parallel light source overhead 
(Figure 8). The illumination on the sphere due to direct light plus 
first bounce was determined. Since the scene is radially symmetric, 
the sphere illuminance is completely described by a one dimensional 
function of the angle below the horizontal ('7), as measured from the 
center of the sphere. A closed form for illuminance was found for 
the upper half of the sphere, and an analytical function was 
integrated numerically for the lower half. The illuminance caching 
calculation was then applied to the problem, and the mean and 
maximum errors of the secondary method were found for different 
values of a .  In each case, the distribution of error was relatively 
uniform over the sphere, though the density of primary evaluations 
varied by several orders of magnitude. The mean error was about 
one fourth, and the maximum error was about twice the estimated 
error for the split sphere. The relationship between error and a had 
the expected linear correlation. 

Figures 9a, 9b and 9c show a daylit office space with direct 
only, first bounce, and seven bounces, respectively. The blind- 
covered window was modeled as six area sources with precalculated 
distributions accounting for solar and sky components. The images 
took 25, 40, and 70 hours in separate calculations on a VAX 11/780. 

Figure I0 shows an ice cream store illuminated by indirect 
cove lighting. The total computation took about 30 hours on a Sun 
3/60. We estimate the image would have taken more than 500 
hours using pixel-independent ray tracing, or 100,000 hours for an 
accurate radiosity solution. Although a combined radiosity and ray 
tracing approach would be comparable to our method in computa- 
tion time, it would not model many of the interactions shown in this 
image, such as the illumination under the parfait glass. 

l i i i  

Level 0 Level 1 l_evel 2 Level 3 

F i g u r e  8: A sphere on an infinite plane, used to validate 
the secondary metilod. 

F i g u r e  7: The lines represent rays, and the points 
represent primary evaluations. The rays that  reuse com- 
puted values do not propagate. 

F i g u r e  10: Ice cream store with indirect cove lighting. 
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F |gu re  I~a: Daylit office, direct only calculation. 

F igure  9b: Daylit office, flint bounce calculation. 

F igure  9e: Daylit office, seven bounce calculation. 

91 



SIGGRAPH '88, Atlanta, August 1-5, 1988 

5. D i s c u s s i o n  

Because our averaging technique was derived from a simplified 
model (the split  sphere), it  is impor tan t  to s tudy  its performance in 
s i tuat ions where the  model is not  predictive. Two such cases are 
i l lustrated in Figure 11. They  are both related to bright,  localized 
reflections, such as those tha t  might  result  from a spotl ight  or mir- 
ror. If a bright  spot  is part ial ly hidden by an occluding surface, or 
on the  horizon, then  small  changes in e lement  location and orienta- 
tion can result  in large changes in i l luminance. The averaging tech- 
nique we have  developed will no t  respond appropriately,  and the 
error related to a will be much  larger than  the  original split  sphere 
model. However, bright  spots  also make trouble for the Monte  
Carlo calculation, which requires a higher  sample densi ty to find and 
integrate such luminance  spikes. There is no known lighting calcu- 
lation tha t  can t rack these small  "secondary  sources"  efficiently. 
Our  technique uses a smaller  value for a together  with a higher 
Monte  Carlo sample  density to model these effects, with a 
corresponding increase in complexity.  

Bright reflection partial ly 
occluded by dark object 

Surface 
e}ement 

Bright reflection 
on horizon 

F i g u r e  11: Two cases of indirect i l lumination tha t  are 
difficult to model. 

Besides diffuse interreflection, the  caching technique can also 
be applied to i l luminat ion from large sources, such as a window or 
the sky. Wide  area sources present  a problem for conventional  ray 
t racing cMculations because they are diffmult to sample adequately.  
Normally,  when a ray par t ic ipat ing in the diffuse interreflection cal- 
culation hits  a l i gh t  source, it is ignored. This  prevents  count ing 
light sources twice, since they part icipate in a separate  direct com- 
ponent  calculation. By moving a large source from the direct to the 
indirect step of the  computa t ion ,  it  is possible to obtain a more 
accurate  sampl ing  of its area. W e  have found this  approach 
effective for sources wi th  a solid angle greater  t h a n  1 steradian.  

The  calculation of diffuse t ransmiss ion can also be accelerated 
by caching. Trans lucen t  surfaces become more difficult to model 
with conventional  point  sampl ing techniques as they  become more 
nearly diffuse. The indirect calculation can be used to  obta in  a 
more accurate  integral  of l ight striking a t ranslucent  surface on 
either side. If the  t ransmiss ion function is not  purely diffuse, scat- 
tered specular  rays  can be used to supplement  the  Monte  Carlo cab 
culation, jus t  as they  are for reflection. 

6. C o n c l u s i o n  
We have developed an efficient ray tracing method  for calcu- 

lat ing diffuse interreflection, which when combined with s tandard  
computa t ions  of direct and specular  contr ibutions results  in a com- 
plete s imulat ion of global i l lumination. Only those i l luminance com- 
puta t ions  required for accurate reridering are performed, and the 
values can be reused in o ther  images.  T hus  the method  provides an  
good mix of view-dependent  and  view-independent  qualities. The 
criterion for evaluat ion of diffuse interreflection is an est imate  of  the 
i l luminance gradient  from convenient  measures  of  scene geometry.  
The separat ion of l ighting and geometric models is a basic s t rength  
of ray tracing, and it  is preserved in this  technique.  The  method  
can also model  diffuse t ransmission and i l lumination from large area 
sources. 
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