
12/16/19

1

Constructing	Action	
and	Goto Tables
MICHAEL	WOLLOWSKI

Mostly	based	on	”Engineering	a	Compiler”

Constructing	Action	and	Goto Tables
The	compiler	writer	can	build	Action	and	Goto tables	by	hand.	

However,	the	table-construction	algorithm	requires	scrupulous	
bookkeeping.

It	is	a	prime	example	of	the	kind	of	task	that	should	be	automated	and	
relegated	to	a	computer.	

In	order	to	understand	the	behavior	of	those	programs,	we	will	study	one	
algorithm	that	can	be	used	to	construct	LR(1)	parse	tables.



12/16/19

2

LR(1)	Items
Represent	potential	handles	and	look-ahead	symbols

An	LR(1)	item	[A → β • g, a] consists	of:
◦ A	production	A→	bg
◦ A	placeholder	•	that	indicates	the	position	of	the	stacktop in	
the	productions	rhs

◦ A	specific	terminal	symbol	a as	a	lookahead symbol.

LR(1)	Items
The	position	of	placeholder	•	distinguishes	among	the	following	
three	cases:
◦ [A → • bg, a] indicates that an A would be valid and that 

recognizing a b next would be one step toward discovering an A. 
We call such an item a possibility, because it represents a 
possible completion for the input already seen.

◦ [A → b • g, a] indicates	that	the	parser	has	progressed	from	
the	state	[A → • bg, a] by	recognizing	b. The	b is	consistent	
with	recognizing	an	A.	One	valid	next	step	would	be	to	
recognize	a	g.	We	call	such	an	item	partially	complete.

◦ [A → bg •, a] indicates	that	the	parser	has	found	bg in	a	
context	where	an	A	followed	by	an	a would	be	valid.	If	the	
look	ahead	symbol	is	a,	then	the	item	is	a	handle	and	the	
parser	can	reduce	bg to	A.	Such	an	item	is	complete.



12/16/19

3

LR(1)	Items	for	Parenthesis	Grammar
Here	you	see	the	complete	set	of	LR(1)	items	generated	for	the	
parentheses	grammar	listed	below.

First	and	Follow	Sets	for	our	Grammar
Follow(	Goal )	=	{eof}

Follow(	List )	=	{eof,(}

Follow(	Pair)	=	{eof,(, )}

First(	Goal )	=	{(}

First(	List )	=	{(}

First(	Pair)	=	{(}



12/16/19

4

Canonical	Collection
A	Canonical	Collection CC of	a	set	of	LR(1)	items	is	a	
model	of	all	transitions	that	can	occur,	beginning	at	
the	start	state.

CC = {CC0, CC1, …, CCn}

Each	CCi
◦ is	a	set	of	LR(1)	items
◦ will	represents	a	parser	state

Two	operations	are	used	to	calculate	them:
◦ Closure
◦ Goto

Q2

Closure
The	closure	operation	completes	a	state.

Given	a	core	set	of	LR(1)	items,	it	adds	to	that	set	any	
related	LR(1)	items	that	they	imply.	

For	example,	any	set	that	contains	Goal	→ List	may	
also	contain	the	productions	that	derive	a	List.	
Thus,	we	may	add	items	[List	→ •List	Pair, eof] and	
[List → •	Pair, eof] to	the	list	containing	
[Goal	→ •List,	eof].

Q2



12/16/19

5

Closure
To	simplify	the	task	of	finding	the	goal	symbol,	we	require	
that	the	grammar	have	a	unique	goal	symbol	that	does	not	
appear	on	the	right-hand	side	of	any	production.

The	item	[Goal	→ •List,	eof] represents		the		parser's		initial		
state		for		the	parentheses	grammar.

Every	valid	parse	recognizes	Goal	followed		by	eof.	

This	item	forms	the	core	of	the	first	state	in	CC,	labelled	cc0.	

If	the	grammar	has	multiple	productions	for	the	goal	symbol,	
each	of	them	generates	an	item	in	the	initial	core	of	cc0.

The	Closure	Procedure
Finds	equivalence	class	of	LR(1)	items

◦ s	:	a	set	of	LR(1)	items

closure(s)
while (s is changing)

for each item [A→β•Cd, a] in s
for each production C → γ

for each b in First(da)
s ← s ∪ {[C →•γ,b]}

return s



12/16/19

6

The	Closure	Procedure:	Example
For	the	parentheses	grammar,	the	initial	item	is	

[Goal	→ •List,	eof]

Applying closure		to	that	set	adds	the	following	items:
1. [List→ •List	Pair,	eof]
2. [List→ •List	Pair,	(]
3. [List→ •Pair,	eof]
4. [List→ •Pair,	(]
5. [Pair→ •(Pair),	eof]
6. [Pair→ •(Pair),	(]
7. [Pair→ •(),	eof]
8. [Pair→ •(),	(]

This	set	is	cc0

Goto
To	model	the	transition	that	the	parser	would	make	from	a	
given	state	on	some	grammar	symbol,	x,	the	algorithm	
computes	the	set	of	items	that	would	result	from	recognizing	
an	x.	

To	do	so,	the	algorithm	selects	the	subset	of	the	current	set	
of	LR(1)	items	where	•	precedes	x	and	advances	the	•	past	
the	x	in	each	of	them.	

Q2



12/16/19

7

The	Procedure	Goto
Finds	state	transitions

◦ s	:	a	set	of	LR(1)	items
◦ x	:	a	terminal	or	non-terminal	symbol

goto(s, x)
moved ← {}
for each item i in s

if i is like [A→β•xd, a] then
moved ← moved ∪ { [A→βx•d, a] }

return closure(moved)

The	Procedure	Goto:	Example
Given	cc0,	we	now	compute	goto(cc0,	()

This	set	includes	the	following	items:
1. [Pair→ (•Pair),	eof]
2. [Pair→ (•Pair),	(]
3. [Pair→ (•),	eof]
4. [Pair→ (•),	(]
5. [Pair→ •(Pair),	)]
6. [Pair→ •(),	)]



12/16/19

8

Either a terminal 
or a non-terminal

Algorithm	to	Build	CC
CC0 ← closure({[S’ → •S, eof]})
CC ← { CC0 } 
while (new sets still being added to CC)

for each unmarked set CCj in CC
mark CCj as processed
for each X following a • in an item of CCj

temp ← goto(CCj, X)
if (temp not in CC)

then CC ← CC∪ {temp}
record transition from CCj to temp on X

CC	for	Parentheses	Grammar



12/16/19

9

CC	for	Parentheses	Grammar

CC	for	Parentheses	Grammar



12/16/19

10

CC	for	Parentheses	Grammar

CC	for	Parentheses	Grammar
The	closure	sets	produced	for	our	grammar:



12/16/19

11

DFA	of	ccis

Producing	the	Action	and	Goto Tables
Each	cci becomes	a	state.

Shift:
◦ An	item	of	the	form	[A→β•Cg, a] indicates	that	encountering	the	terminal	
symbol	C	would	be	a	valid	next	step	toward	discovering	the	nonterminal	A.	
Either	b or	g can	be	e.

◦ It	generates	a	shift	item	on	C	in	the	current	state.	
◦ The	next	state	for	the	recognizer	is	the	state	generated	by	computing	goto	on	
the	current	state	with	the	terminal	c.	

Reduce:
◦ An	item	of	the	form	[A→β•, a] indicates	that	the	parser	has	recognized	a	b
and	if	the	lookahead	is	a,	then	the	item	is	a	handle.	

◦ It	generates	a	reduce	item	for	the	production	A→β on	a	in	the	current	state.



12/16/19

12

Producing	the	Action	and	Goto Tables
Accept:
◦ An	item	of	the	form	[S’→S•, eof] where	S'	is	the	goal	symbol	indicates	the	
accepting	state	for	the	parser.	

◦ This	item	generates	an	accept	action	on	eof		in	the	current	state.

Producing	the	Action	and	Goto Tables
Action	and	Goto	tables	for	our	grammar:



12/16/19

13

Producing	the	Action	and	Goto Tables
Notice	that:
◦ there	are	no	shift/reduce	actions	associated	with	any	of	the	non-terminals	in	
the	grammar.

◦ the	CC	table	tells	us	transitions	outright.
◦ it	does	not	tell	us	shift,	reduce	or	accept	actions.
◦ an	application	of	a	rule	does	not	change	state	per	se.	As	such	our	CC	table	
has	no	state	change	information	for	them.

◦ the	number	associated	with	each	rule	is	the	rule	number,	not	the	state	
number.


