
12/16/19

1

Bottom-up	Parsing
MICHAEL	WOLLOWSKI

Bottom-Up	Parsing:	Principles
Build	parse	tree	starting	with	the	leaves.
Work	towards	root.
Leaves	are	terminals.
Construct	a	leaf	for	each	word	returned	by	scanner.
To	build	a	derivation,	the	parser	adds	layers	of	non-terminals	on	top	of	
leaves.
Structure	is	dictated	by	grammar	and	partially	completed	lower	portion	of	
parse	tree.



12/16/19

2

Bottom-Up	Parsing:	Use
Bottom-up	parsing	is	designed	for	LR(1)	languages

◦ L:	Read	input	Left-to-right
◦ R:	Build	a	Rightmost	derivation
◦ 1:	Use	1 token	of	look-ahead

For	bottom-up	parsing,	we	may	use	a	grammar	that	is	left-recursive	
and	is	not left-factored.

Language	Classes



12/16/19

3

Bottom-Up	Parsing:	Process
We	call	the	frontier of	a	parse	tree	the	current	sentential	form	in	the	derivation.
To	extend	the	frontier	upward,	the	parser	looks	in	the	current	frontier	for	a	
substring	that	matches	the	rhs of	some	production	A →	b.
If	it	finds	b in	the	frontier,	with	its	right	end	at	k,	it	can	replace	b with	A to	create	
a	new	frontier.
If	replacing	b with	A at	position	k is	the	next	step	in	a	valid	derivation,	then	the	
pair	<A →	b,	k>	is	a	handle in	the	current	derivation.
Finding	handles	is	a	key	issue	in	bottom-up	parsing.

Bottom-Up	Parsing:	Process
We	call	a	replacement	of	b by	A a reduction.

A	bottom-up	parser	follows	the	follow	process:

◦ Attempt	to	find	a	handle	<A →	b,	k>	

◦ Reduce	b at	k with	A

◦ If	the	goal	symbol	has	been	derived,	terminate	with	success.

◦ If	not,	terminate	with	failure

If	the	parser	terminates	with	failure,	it	should	use	the	context	accumulated	in	the	
partial	derivation	to	issue	a	meaningful	error	message.

In	many	cases,	the	parser	can	recover	from	an	error	and	continue	parsing.



12/16/19

4

Action	and	Goto Tables
An	LR(1)	parser	uses	a	handle-finding	automaton,	encoded	into	two	tables,	
called	Action	and	Goto.

To	find	the	next	handle,	a	shift-reduce	parser	shifts	symbols	onto	the	stack	until	
the	automaton	finds	the	rhs of	a	handle	at	the	top	of	the	stack.	

Once	it	has	a	handle,	the	parser	reduces	the	rhs symbols	by	the	lhs	non-terminal	
of	the	matching	production	A	→ b.	

To	do	so,	it	pops	the	symbols	in	b from	the	stack	and	pushes	A	onto	the	stack.	

Action-Goto table
Grammar:																																Action-Goto

Table:



12/16/19

5

Shift-Reduce	Parsers
Bottom-up	or	LR(1)	parsers	are	oftentimes	called	shift-reduce parsers.

This	is	due	to	their	primary	actions	of	shifting input	onto	a	stack	until	a	handle	is	
found	that	can	then	be	reduced to	its	lhs	non-terminal.

We	use	a	stack	to	hold	grammar	symbols	and	we	use	an	input	buffer	to	hold	the	
string	w	to	be	parsed.

In	the	following	example	(from	pp	198/9	of	the	Dragon	book),	we	use	$	to	mark	
the	right	end	of	the	input,	i.e.	it	indicates	eof

Skeleton	Shift-
Reduce	Parser



12/16/19

6

Solution	to	Class	Exercise

Producing	Parse	Trees
Whenever	there	is	a	“reduce”	action,	the	production	
can	be	used	to	extend	the	parse	tree.
To	the	right,	you	see	the	parse	tree	that	is	produced	
when	reading	off	the	reduce	actions	from	the	prior	
slide.



12/16/19

7

Parsing	Erroneous	Input
Any	empty	entry	in	the	action-goto table	is	an	error	state.


