12/13/19

Top-down Parsing
Cont’d

MICHAEL WOLLOWSKI

Left Recursion

Formally, a grammar is left recursive if there exist an A € NT such
that there is a derivation A =* Aq, for some string a € (NTU T)*

Left-recursion typically, leads to non-termination in a top-down
parser

In a top-down parser, any recursion must be right recursion

We would like to convert the left recursion to right recursion

12/13/19

Indirect Left Recursion

In addition to left-recursion that occurs for a given production, there is
indirect left-recursion.

Indirect left-recursion occurs when a sequence of productions creates left-

recursion.

Example:
S>Aa|b
A > Ac | Sd

Derivation: S = Aa = Sda

Removing Indirect Left Recursion

Arrange the NTs in some order A;, A,, .., A,
for i « 1 to n
for s « 1 to i -1
replace each production A; — Ay
with A; — 61}/T62y?...|6k7, where A, — 61|62| ...|6k
are all the current productions for A,

eliminate any immediate left recursion on A;
using the direct transformation

The inner loop must start with 1 to ensure that A, &> A, B is
transformed

Assumes that the initial grammar has no cycles (A; =* A;) and no
epsilon productions

12/13/19

Removing Indirect Left Recursion

Example revised:
S 2 Aa | b

A > Ac | sd
Order of non-terminals: S, A
Pairings according to algorithm: <S, S> and <A, S>
There is no production S =2 S
We do have a production of the form A = Sy
In A = Sd we replace S with Aa and b, giving us:
A - Aad | bd

Removing Indirect Left Recursion

We now replace all immediate left-recursion in the two A
productions:

A - Ac | Aad | bd
like so:
A - bdA’
A > cA | adA | ¢
We'll throw in the unmodified productions of S for free:
S2>Aa|b

12/13/19

Predictive Parsing

An LL(1) grammar is considered a predictive grammar.

Reminder: Left-to-right scan, Left-most derivation, (1) word look-
ahead

By removing left-recursion, i.e. by making the grammar right-
recursive, we can create left-most derivations.

A predictive parser is based on a predictive grammar.

We will now focus on the look-ahead.

Predictive Parsing

Given the input a+b*c, the lexical analyzer will eventually produce the following sequence of

tokens:
<ID, a> <Operator, +> <ID, b> <Operator, *><ID, c> 0 Gl > Epr 6 Tom’ — x Factor T’
. . — Term Expr’ 7 + Factor Term’
A parser with 0 token look-ahead will proceed as follows: ,
— + Term Expr €
Goal §
Expr | Term Expr { Expr)
Term Expr’ Sy | € fum
5 Term - Factor Term’ name

Factor Term’ Expr’
With 0 token look ahead, we have three choices for Factor:
°
° num
° name
The parser would try all three.

12/13/19

Predictive Parsing

token it has

O

Success.

the parser.

o For each attempt, the parser would ask the lexical analyzer what

If it is not the right token, it would backtrack and try again
o This goes on until the parser reaches the last production and has

o This is silly, instead, grab the next symbol and make it available to

o Thisis an LL(1) grammar, also called a predictive grammar.

Left-Factoring to Eliminate Backtracking

Consider: i1 Factor
12

15 ArgList
16 MoreArgs

a new production:
11 Factor

13
14

-
|
|

N

N
|

We now have an almost back-track free grammar.

name
name [ArgList]
name (ArgList)
Expr MoreArgs

, Expr MoreArgs
€

Rules 11, 12 and 13 all begin with name.
Name is a common pre-fix to all three rules and can be eliminated by introducing

— name Arguments

12 Arguments — [ArgList]

| (ArgList)
| €

12/13/19

Left-Factoring to Eliminate Backtracking

In general, we can left-factor any set of rules that has alternate right-hand sides with

a common prefix.

Convert a set of productions:
AS>ap|ap | lapnlnl-1y
where ais a common prefix and the ¥’s represent rhs that
do not begin with c.

To:

A9a3|71|72|---|}’j
B> Bl Bl 1B

Main()
/* Goal — Expr */
word < NextWord();
if (Expr())
then if (word = eof)
then report success;
else Fail();

Top-Down Recursive-
Descent Parsers

Fail()
report syntax error;
attempt error recovery or exit;

o We will now have a look at top-
down recursive descent parsers
oTo make them work, we need to
know the leading words that a
production might encounter

Expr()
/* Expr — Term Expr' */
if (Term())
then return EPrime();
else Fail();

EPrime()
/% Expr'—> + Term Expr’ +/
/% Expr'—> - Term Expr’ +/
if (word =+ or word = -)
then begin;
word <« NextWord();:
if (Term())
then return EPrime();
else Fail();
end;
else if (word =) or word = eof)
/% Expr'— e */
then return true;
else Fail();

Term()
/* Term — Factor Term' +/
if (Factor())
then return TPrime();
else Fail();

TPrime()
/#* Term'— X Factor Term’ */
/% Term'—> + Factor Term’ +/
if (word = x or word = +)
then begin;
word <« NextWord();
if (Factor())
then return TPrime();:
else Fail():
end;
else if (word = + or word = - or
word =) or word = eof)
/% Term'— e */
then return true;
else Fail();

Factor()

/% Factor — (Expr) */
if (word = () then begin;
word < NextWord();
if (not Expr())
then Fail();
if (word £))
then Fail();
word <« NextWord():
return true;
end;
/#* Factor — num */
/* Factor — name */
else if (word = num or
word = name)
then begin;:
word <« NextWord();
return true;
end;

else Fail();

12/13/19

First(a)

If a is any string of grammar symbols, let First(a) be the set of
terminals that begin the strings derived from a.

o € Terminals U Non-terminals U { €}

Intuitively, for a non-terminal A, First(c) contains the complete set of
terminal tokens that can appear as a leading symbol in a sentential
form derived from A.

Calculating First

1. If X is a terminal, then First(X) is {X}

2. If X > €is a production, then add € to First(X)
3. Let X > Y1Y2 ... Ykbe a production:
a) If ais in First(Y;), then place a is in First(X).

b) If e is in all of First(Y,), ..., First(Y;;), thatisY;...Y;; =>* €, then place all a in
First(Y;) into First(X).

c) Ifeisin First(Y;) forallj=1,2, ...k, then add € to First(X).

12/13/19

Example of Calculating First

Consider:

Expr - Term Expr’

Expr’ -~ + Term Expr’ | - Term Expr’ | e
Term - Factor Term’

Term’ » * Factor Term’ | / Factor Term’ | ¢
Factor- (Expr) | num | id

Initially, we create First sets for all the terminals: ----.-.-.-

First num id S O A L T P

Next, the algorithm iterates over the productions, using First sets for the right-hand side of a
production to derive the First set for the non-terminal on its left-hand side:

First (, id, num +,-,¢& (,id, num * /,e (,id, num

Follow(A)

Define Follow(A), for a non-terminal A, to be the set of terminals a
that can appear immediately to the right of A in some sentential
form.

In other words, the set of terminals a are such that there exists a
derivation of some form S =>* aAaf3 for some o and .

Notice that at some point during the derivation there may have been
non-terminals between A and g, but if so, they derived ¢.

If A can be a right-most symbol in some sentential form, then eof is
in Follow(A).

12/13/19

Calculating Follow

Recall that we do this only for non-terminals.
1. Put eof in Follow(S), where S is the start symbol
2. If there is a production A = aBp, then everything in First()
except for € is placed in Follow(B)
3. If there is a production A = aB, then everything in Follow(A) is
in Follow(B)

4. If there is a production A - aBf3 where First(B) contains €, i.e.
=>* g, then everything in Follow(A) is in Follow(B)

Example of Calculating Follow

Consider:
Expr - Term Expr’
Expr’ - + Term Expr’ | - Term Expr’ | e
Term - Factor Term’
Term’ - * Factor Term’ | / Factor Term’ | ¢

Factor- (Expr) | num |id

Here are our First sets which we Ll xR Bt erm) erm IFactor (N

calculated earlier: First (, id, num +,-,& (,id, num *,/,€ (id, num

.~ EBpr Bxpr’ Tem Term’ Factor
Now, let’s calculate the Follow sets: 1 eof

2. eof +, - */

3, eof,) +, - */

4 eof,) eof,) +, + * 1,

Follow eof,) eof,) +,-,eof,) + - eof) */, +, - eof,)

12/13/19

Using Follow

In recursive-descent parsers the EPrime()

Follow sets are used for error Jx Expr'— + Torm Expr! %/

checking in those cases where there is /+ gpr'— - Term Expr +/

an e-production. if (word = + or word = -)
then begin;

Consider the
implementation

word <— NextWord();
it (Term())

Of Expr’: then return EPrime();
Near the bottom, else Fail();
we implement the end:

e-production using else 17 ((word =Y or word = eof))

/% Expr'— ¢ *
the f'OIIOW set of then return true:
Expr else Fail();

Table-Driven LL(1) Parsers

We have seen the core of a (top-down) recursive-descent parser.

It implements the productions directly through recursive procedures.
An abstraction of such an approach is offered by what is called a
“table-driven” parser.

Rather than implement the rules in code, they are represented in a
table.

We then write a procedure that based on the current grammar
symbol and the current token provided by the Lexer looks up a
production that is to be followed.

10

12/13/19

Table-driven Predictive Parser

iveur [[a]+]b]$]

Predictive Parsing

———= OUTPUT
Program

Parsing Table
M

Table-Driven LL(1) Parsers

We will use the First and Follow sets to populate the entries in the
parsing table M as follows:

1.For each production A - a of the grammar, perform steps 2, 3 and 4.

2.For each terminal a in First(a), add the production A - a to M[A, a]

3.If gis in First(a), add A = € to MIA, b] for each terminal b in Follow(A).

4.If g is in First(a) and eof is in Follow(A), add A > ato M[A, eof].

5.Make each undefined entry be an error.

11

12/13/19

Table-Driven LL(1) Parsers

Parse-table for our grammar:

eof + - * / () id num
Expr E-TE’ E-TE’ E-TE’
Expr’ E'— & | E'=+TE’ | E'~-TE’ E'o &
Term T-FT' T-FT’ T-FT’
Term’ T e | T'— ¢ T g T/ *FT! | T/ /FT' T g
Factor F (E) F- id | F» num

Table-Driven
LL(1) Parsers

PUSTI L€ SLdI'L SYymuui, o, UILU JLdun;
focus < top of Stack;
loop forever;
if (focus = eof and word = eof)
then report success and exit the loop;
else if (focus € T or focus = eof) then begin;
if focus matches word then begin;
pop Stack;
word < NextWord();
end;
else report an error looking for symbol at top of stack;
end;
else begin; /* focus is a nonterminal */
if Table[focus,word] is A — ByBp---By then begin;

pop Stack;
for i <« k to 1 by -1 do;
if (B # €)
then push B; onto Stack;
end;
end;

else report an error expanding focus;
end;
focus < top of Stack;
end;

12

12/13/19

First/Follow Recap

First:
o Let A be a non-terminal, then FIRST(A) is defined to be the set of terminals that can appear
in the first position of any string derived from A.

o FIRST is also defined for terminals, but its value is just equal to the terminal itself.

Follow:
o Let A be a non-terminal, then FOLLOW/(A) is the union over FIRST(B) where B is any non-
terminal that immediately follows A in the right hand side of a production rule.

FIRST shows us the terminals that can be at the beginning of a derived non-
terminal, FOLLOW shows us the terminals that can come after a derived non-

terminal.

13

