
12/13/19

1

Top-down	Parsing	
Cont’d
MICHAEL	WOLLOWSKI

Left	Recursion
Formally,	a	grammar	is	left	recursive if	there	exist	an	A	Î NT such	
that		there	is	a	derivation	A	Þ+ Aa,	for	some	string a Î (NT	È T	)+

Left-recursion	typically,	leads	to	non-termination	in	a	top-down	
parser

In	a	top-down	parser,	any	recursion	must	be	right	recursion
We	would	like	to	convert	the	left	recursion	to	right	recursion



12/13/19

2

Indirect	Left	Recursion
In	addition	to	left-recursion	that	occurs	for	a	given	production,	there	is	
indirect	left-recursion.
Indirect	left-recursion	occurs	when	a	sequence	of	productions	creates	left-
recursion.
Example:

S	à Aa	|	b
A	à Ac	|	Sd

Derivation:	Sà Aa	à Sda

Removing	Indirect	Left	Recursion
Arrange the NTs in some order A1, A2, …, An
for i ¬ 1 to n
for s ¬ 1 to i – 1 

replace each production Ai ® Asg
with Ai ® d1g ½d2g½…½dkg, where As ® d1½d2½…½dk
are all the current productions for As

eliminate any immediate left recursion on Ai
using the direct transformation

The	inner	loop	must	start	with	1	to	ensure	that	A1® A1 b is	transformed
Assumes	that	the	initial	grammar	has	no	cycles	(AiÞ+ Ai	)	and	no	epsilon	productions	



12/13/19

3

Removing	Indirect	Left	Recursion
Example	revised:

S à Aa | b

A à Ac | Sd
Order	of	non-terminals:	S,	A
Pairings	according	to	algorithm:	<S,	S>	and	<A,	S>
There	is	no	production	S	à S
We	do	have	a	production	of	the	form	A	à Sg
In	A	à Sd we	replace	S	with	Aa and	b,	giving	us:

A	à Aad |	bd

Removing	Indirect	Left	Recursion
We	now	replace	all	immediate	left-recursion	in	the	two	A	
productions:
A	à Ac	|	Aad |	bd
like	so:
A	à bdA’
A’	à cA’	|	adA’	|	e
We’ll	throw	in	the	unmodified	productions	of	S	for	free:
S	à Aa	|	b



12/13/19

4

Predictive	Parsing
An	LL(1)	grammar	is	considered	a	predictive	grammar.

Reminder:	Left-to-right	scan,	Left-most	derivation,	(1) word	look-
ahead
By	removing	left-recursion,	i.e.	by	making	the	grammar	right-
recursive,	we	can	create	left-most	derivations.
A	predictive	parser	is	based	on	a	predictive	grammar.
We	will	now	focus	on	the	look-ahead.

Predictive	Parsing
Given	the	input	a+b*c,	the	lexical	analyzer	will	eventually	produce	the	following	sequence	of	
tokens:	

<ID,	a>	<Operator,	+>	<ID,	b>	<Operator,	*>	<ID,	c>	

A	parser	with	0	token	look-ahead	will	proceed	as	follows:	
Goal
Expr
Term Expr’
Factor Term’ Expr’

With	0	token	look	ahead,	we	have	three	choices	for	Factor:
◦ (
◦ num
◦ name
The	parser	would	try	all	three.



12/13/19

5

Predictive	Parsing
o For	each	attempt,	the	parser	would	ask	the	lexical	analyzer	what	

token	it	has
o If	it	is	not	the	right	token,	it	would	backtrack	and	try	again
o This	goes	on	until	the	parser	reaches	the	last	production	and	has		

success.
o This	is	silly,	instead,	grab	the	next	symbol	and	make	it	available	to		

the	parser.	
o This	is	an	LL(1)	grammar,	also	called	a	predictive	grammar.

Left-Factoring	to	Eliminate	Backtracking
We	now	have	an	almost	back-track	free	grammar.
Consider:

Rules	11,	12	and	13	all	begin	with	name.	
Name	is	a	common	pre-fix	to	all	three	rules	and	can	be	eliminated	by	introducing	
a	new	production:



12/13/19

6

Left-Factoring	to	Eliminate	Backtracking
In	general,	we	can	left-factor any	set	of	rules	that	has	alternate	right-hand	sides	with	
a	common	prefix.
Convert	a	set	of	productions:

A à ab1 | ab2 | ...	|abn | g1 | g2 | …	|	gj
where	a is	a	common	prefix	and	the	gi’s represent	rhs that		
do	not	begin	with	a.	

To:
A à aB | g1 | g2 | …	|	gj

B à b1 | b2 | ...	|bn

Top-Down	Recursive-
Descent	Parsers
o We	will	now	have	a	look	at	top-
down	recursive	descent	parsers
oTo	make	them	work,	we	need	to	
know	the	leading	words	that	a	
production	might	encounter



12/13/19

7

First(α)
If	α is	any	string	of	grammar	symbols,	let	First(α) be	the	set	of	
terminals	that	begin	the	strings	derived	from α.

α	∈ Terminals	∪ Non-terminals	∪ {	ε }
Intuitively,	for	a	non-terminal	A,	First(a)	contains	the	complete	set	of	
terminal	tokens	that	can	appear	as	a	leading	symbol	in	a	sentential	
form	derived	from	A.

Calculating	First
1. If X is a terminal, then First(X) is {X}

2. If X → ε is a production, then add ε to First(X) 

3. Let X →Y1 Y2 … Yk be a production:
a) If a is in First(Y1), then place a is in First(X).

b) If ε is in all of First(Y1), …, First(Yi-1), that is Y1…Yi-1 =>* ε, then place all a in 
First(Yi) into First(X).

c) If ε is in First(Yj) for all j = 1, 2, …,k, then add ε to First(X).



12/13/19

8

Example	of	Calculating	First
Consider:
Expr → Term Expr’
Expr’ → + Term Expr’ | - Term Expr’ | ε
Term → Factor Term’
Term’ → * Factor Term’ | / Factor Term’ | ε
Factor→ (Expr) | num | id

Initially,	we	create	First	sets	for	all	the	terminals:

Next,	the	algorithm	iterates	over	the	productions,	using	First	sets	for	the	right-hand	side	of	a	
production	to	derive	the	First	set	for	the	non-terminal	on	its	left-hand	side:

num id + - * / ( ) e
First num id + - * / ( ) e

Expr Expr’ Term Term’ Factor
First (,	id,	num +,	-,	e (,	id,	num *,	/, e (,	id,	num

Follow(A)
Define	Follow(A),	for	a	non-terminal	A,	to	be the	set	of	terminals	a
that	can	appear	immediately	to	the	right	of	A in	some	sentential	
form.
In	other	words,	the	set	of	terminals	a are	such	that	there	exists	a	
derivation	of	some	form	S =>*	aAab for	some	a and	b.
Notice	that	at	some	point	during	the	derivation	there	may	have	been	
non-terminals	between	A and	a,	but	if	so,	they	derived	e.
If	A	can	be	a	right-most	symbol	in	some	sentential	form,	then	eof is	
in	Follow(A).



12/13/19

9

Calculating	Follow
Recall	that	we	do	this	only	for	non-terminals.
1. Put	eof in	Follow(S),	where	S is	the	start	symbol
2. If	there	is	a	production	A → αBβ, then	everything	in	First(β)	

except	for	ε	is	placed	in	Follow(B)
3. If	there	is	a	production	A → αB, then	everything	in	Follow(A)	is	

in	Follow(B)
4. If	there	is	a	production	A → αBb where	First(β)	contains	ε,	i.e.	β	

=>* ε,	then	everything	in	Follow(A)	is	in	Follow(B)

Example	of	Calculating	Follow
Consider:
Expr → Term Expr’
Expr’ → + Term Expr’ | - Term Expr’ | ε
Term → Factor Term’
Term’ → * Factor Term’ | / Factor Term’ | ε
Factor→ (Expr) | num | id

Here	are	our	First	sets	which	we	
calculated	earlier:

Now,	let’s	calculate	the	Follow	sets:
Expr Expr’ Term Term’ Factor

1. eof
2. eof +,	- *,	/
3. eof,	) +,	- *,	/
4. eof,	) eof,	) +,	-, +,	-, *,	/,
Follow eof,	) eof,	) +,	-,	eof,	) +,	-, eof,	) *,	/, +,	-, eof,	)



12/13/19

10

Using	Follow
In	recursive-descent	parsers	the	
Follow	sets	are	used	for	error	
checking	in	those	cases	where	there	is	
an	e-production.
Consider	the	
implementation
of	Expr’:

Near	the	bottom,
we	implement	the
e-production	using
the	follow	set	of	
Expr’

Table-Driven	LL(1)	Parsers
We	have	seen	the	core	of	a	(top-down)	recursive-descent	parser.
It	implements	the	productions	directly	through	recursive	procedures.
An	abstraction	of	such	an	approach	is	offered	by	what	is	called	a	
“table-driven”	parser.
Rather	than	implement	the	rules	in	code,	they	are	represented	in	a	
table.
We	then	write	a	procedure	that	based	on	the	current	grammar	
symbol	and	the	current	token	provided	by	the	Lexer looks	up	a	
production	that	is	to	be	followed.



12/13/19

11

Table-driven	Predictive	Parser

Table-Driven	LL(1)	Parsers
We	will	use	the	First	and	Follow	sets	to	populate	the	entries	in	the	
parsing	table	M as	follows:
1.For each production A → α	 of the grammar, perform steps 2, 3 and 4.
2.For each terminal a in First(a), add the production A → α	to	M[A,	a]
3.If e is in First(a), add A → e to	M[A,	b]	for	each	terminal	b in	Follow(A).
4.If e is in First(a) and eof is in Follow(A), add A → α	to	M[A,	eof].
5.Make	each	undefined	entry	be	an	error.



12/13/19

12

Table-Driven	LL(1)	Parsers
Parse-table for our grammar:

Table-Driven	
LL(1)	Parsers



12/13/19

13

First/Follow	Recap
First:
◦ Let	A	be	a	non-terminal,	then	FIRST(A) is	defined	to	be	the	set	of	terminals	that	can	appear	
in	the	first	position	of	any	string	derived	from	A.		

◦ FIRST is	also	defined	for	terminals,	but	its	value	is	just	equal	to	the	terminal	itself.	

Follow:
◦ Let	A	be	a	non-terminal,	then	FOLLOW(A)	is	the	union	over	FIRST(B)	where	B	is	any	non-
terminal	that	immediately	follows	A	in	the	right	hand	side	of	a	production	rule.

FIRST shows	us	the	terminals	that	can	be	at	the	beginning	of	a	derived	non-
terminal, FOLLOW shows	us	the	terminals	that	can	come after a	derived	non-
terminal.	


