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Lexer

● Artisanal, hand-coded Lexer
● Takes in MiniJava program as input
● Lexes program into ReservedWords, Integers, IDs, Delimiters, and Operators
● Outputs stream of Lexemes to Parser

Parser

● Top-down, table-driven parser
● Parse table generated from .csv file
● Outputs parse tree to Syntax Analysis
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Generator
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Syntax Analysis

● Removes syntactic sugar from parse tree
● Ensures uniformity

○ i.e. every if statement consists of four children

● Outputs syntax tree to Code Generator

Code Generator

● Three Phase Code Generation

● RISC-Style intermediate language
○ Direct, Immediate and Inherent addressing modes
○ Designed for portability to different targets

Namespace
Generation

Type
Checking Registerize
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Optimization

● Simplifies Instructions
○ I.e. mult y x 2 -> add y x x

● Removes unused variables
● Schedules instructions to avoid stalls

Error Handling

● Simple “Panic mode” error handling in parser
○ Prints out error
○ Skip ahead until valid input is reached
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Type Checking

● Simple pre-processing of expressions and statements
● Handled during code generation
● Casts types when allowed

○ Implements truthiness

integer == boolean → boolean

Questions?


