
2/28/20

1

Mini-Java Compiler
Tommy McMichen and Nathan Greiner

Architecture

MiniJava
Program Lexer Parser

Grammar Parse Table 
Generator

Syntax
Sugarer

Code Tokens
Parse
Tree

Parse Table

Code Generator

Namespace
Generation

Type
Checking Registerize

Target 
Code

Generator
Optimizer Target

Code

.csv File



2/28/20

2

Lexer

● Artisanal, hand-coded Lexer
● Takes in MiniJava program as input
● Lexes program into ReservedWords, Integers, IDs, Delimiters, and Operators
● Outputs stream of Lexemes to Parser

Parser

● Top-down, table-driven parser
● Parse table generated from .csv file
● Outputs parse tree to Syntax Analysis

ParserGrammar Parse Table 
Generator

Parse Table.csv File



2/28/20

3

Syntax Analysis

● Removes syntactic sugar from parse tree
● Ensures uniformity

○ i.e. every if statement consists of four children

● Outputs syntax tree to Code Generator

Code Generator

● Three Phase Code Generation

● RISC-Style intermediate language
○ Direct, Immediate and Inherent addressing modes
○ Designed for portability to different targets

Namespace
Generation

Type
Checking Registerize



2/28/20

4

Optimization

● Simplifies Instructions
○ I.e. mult y x 2 -> add y x x

● Removes unused variables
● Schedules instructions to avoid stalls

Error Handling

● Simple “Panic mode” error handling in parser
○ Prints out error
○ Skip ahead until valid input is reached



2/28/20

5

Type Checking

● Simple pre-processing of expressions and statements
● Handled during code generation
● Casts types when allowed

○ Implements truthiness

integer == boolean → boolean

Questions?


