
2/28/20

1

CSSE404 Presentation

Matthew Lyons & Karl Reese

Data Flow



2/28/20

2

Lexification

● Each Token type has a corresponding Matcher
● Match tokens using regular expressions
● Shown below: CommentMatcher

Parse Tree Construction

● Top-down table-driven parser using an LL(1) grammar
● Read in grammar table from .txt file on initialization
● Create symbol tables

○ Cheap scoping: each symbol table has a pointer to its parent table

● Panic button error recovery

https://mikedevice.github.io/first-follow/

http://jsmachines.sourceforge.net/machines/ll1.html

Te
st

.ja
va



2/28/20

3

Abstract Syntax Tree 
Transformation
● Deep Copy the parse tree on initialization
● Run a sequence of many small but mighty transformation 

functions on the parse tree
○
○
○
○
○

● Puts tree into a form that is easier to generate intermediate 
code for

Test.java

Abstract Syntax Tree 
Transformation
● Deep Copy the parse tree on initialization
● Run a sequence of many small but mighty transformation 

functions on the parse tree
○ “addLastChildTo”
○
○
○
○

● Puts tree into a form that is easier to generate intermediate 
code for

Test.java



2/28/20

4

Abstract Syntax Tree 
Transformation
● Deep Copy the parse tree on initialization
● Run a sequence of many small but mighty transformation 

functions on the parse tree
○ “addLastChildTo”
○ “murderIfs”
○
○

● Puts tree into a form that is easier to generate intermediate 
code for

Test.java

Abstract Syntax Tree 
Transformation
● Deep Copy the parse tree on initialization
● Run a sequence of many small but mighty transformation 

functions on the parse tree
○ “addLastChildTo”
○ “murderIfs”
○ “gentlyRemoveStatementListsAndFriends”

● Puts tree into a form that is easier to generate intermediate 
code for

Test.java



2/28/20

5

Abstract Syntax Tree 
Transformation
● Deep Copy the parse tree on initialization
● Run a sequence of many small but mighty transformation 

functions on the parse tree
○ “addLastChildTo”
○ “murderIfs”
○ “gentlyRemoveStatementListsAndFriends”
○ “ultraviolentlySlaughterizeArgListInParticular”

● Puts tree into a form that is easier to generate intermediate 
code for

Test.java

Abstract Syntax Tree 
Transformation
● Deep Copy the parse tree on initialization
● Run a sequence of many small but mighty transformation 

functions on the parse tree
○ “addLastChildTo”
○ “murderIfs”
○ “gentlyRemoveStatementListsAndFriends”
○ “ultraviolentlySlaughterizeArgListInParticular”
○ “superUltraOmegaviolentlyMurderSlaughterizifyArgListPrimeInParticul

arAndSpecifically”

● Puts tree into a form that is easier to generate intermediate 
code for

Test.java



2/28/20

6

Type Validation

● Expressions and subexpressions
○ Postorder traversal

● Function parameters
○ Look up types in symbol table

Test.java

Intermediate Code Generation

● Postorder traversal of AST
○ Creates an instruction for most nodes

● Extremely naive register and label allocation
○ Numbers assigned sequentially, starting from 0

● Also inserts some “non-instructions”
○ PRECALL/POSTCALL
○ PROLOG/EPILOG
○ nope

Test.java



2/28/20

7

Target Code Generation

● Convert instructions to work with x86 (32-bit)
● Still assumes an infinite number of registers

○ We use x86’s EBX, ESI, ETC registers to store temporary values

Test.java

Non-Peephole Optimization

● AST construction inherently optimizes to some extent
● After code generation, we implement one more non-peephole 

optimizer
● Removes instructions where the destination register is never 

used as an input
○ “UnusedDestDestroyer”
○ Removes 29 instructions from LinkedList.java



2/28/20

8

Peephole Optimization

● Variety of peephole optimizers
● Sliding window of 3
● Removes 90 instructions from LinkedList.java

Register Allocation

● Haha, registers are a lie
● Everything lives on the stack

○ Uses architectural registers occasionally since memory-to-memory is 
impossible

● dword

Test.java



2/28/20

9

Header Insertion

● Designed to work with NASM
● Imports assembly “library” containing print, malloc, and exit 

routines
● Default supports macOS syscalls, but can be easily extended 

to other environments

Test.java

Fibonacci

● Fib.ComputeFib(40) runs in 1.123 seconds
● Fib.ComputeFib(44) runs in 7.642 seconds
● Fib.ComputeFib(45) runs in 12.374 seconds



2/28/20

10

Questions?

Too bad!


