
Michael & Jason

MiniJava Compiler

Workflow

Lexer Parser

IR Optimizers

Pass 1 Pass 2 Pass n

ASTer

AST Optimizer

AST Generator

Type & Symbol
Checking

X86er

Instruction
Selection

Register
Allocation

IR Generator

src
Token

Stream ParseTree
AST

AST

Optimized AST

...
IR

Optimized IR

X86 Code OutputReal X86 Code Write to file system

Error
Detection

Error
Detection

Error
Detection

Lexer
● Minimized DFA with 89 states
● Output a stream of tokens
● Each token has a type and a field

○ <RESERVED_WORD, class>
○ <INTEGER, 10>
○ <IDENTIFIER, myid>
○ <DELIMITER, ;>
○ <OPERATOR, +>

● Skips invalid characters and output error message

Comments

Operator &
Delimiter

Reserved
Word

ID

Integer

Parser
● Top-down Recursive Descent

Parser
● Precedence encoded
● Forces local variable declaration

at beginning of method
● Recovers from error by skipping

tokens
● Output is a syntactically valid

parse tree (hard to read)

Abstract Syntax Tree (AST)

XYZ

XYZPrimeABC

ABCPrime
Exp

Exp ABCPrime

Exp Exp

EPSILON

EPSILON

Parse Tree

AST

AST continued
3196 lines vs. 176 lines

Type & Symbol Checking with AST
● Input is an AST of a syntactically correct program
● Recursively checks type
● Output is an AST of a semantically correct program
● Example:

○ boolean a;
○ int b;
○ a = b + 3;

○ boolean a;
○ int b;
○ a = b + 3;

AST Optimization
● Pre-computation

○ int a = 3+5; -> int a = 8;

● Algebraic/Logic Simplification
○ Identity: a + 0 -> a; a * 1 -> a, etc

○ Shift: a * 2 -> a<<1; a / 4 -> a>>2, etc

○ Logic: true || a -> true; a || true -> true

(but still evaluates a)

○ a || false -> a, etc

● Dead Conditional
○ if (true) {ABC} else {XYZ} -> ABC

○ While (false) {ABC} -> NOTHING

Short circuit is also implemented:

a && b => if (!a) false else b

Intermediate Representation (IR)

Intermediate Representation

Intermediate
Method

Intermediate
Method

Intermediate
Method

Intermediate
Method...

List<Code> ...

Intermediate code generated is assembly-like and follows a MIPS-like syntax
Example: SUB <Var @51> <Var num> <Int 1> // @51 = num - 1;

Temporary variables are generated in this step (prefix ‘@’ followed by a serial number)
Fields are replaced with load/store at an offset

List<Code> List<Code> List<Code>

The program is represented using a list of Intermediate Methods.
Each method has a record of its arguments, local variables, etc.

IR Optimization
Optimization Description Example

Operation + Store Optimizes operations that output a variable
that is immediately stored to somewhere
else.

ADD <Var @1> <Var a> <Int 3>
STORE <Var b>
⇒ ADD <Var b> <Var a> <Int 3>

Set&Jmp Combines Setcc and Je with Jcc SETLE <Var @1> <Var a> <Var b>
JE <LABEL> <Var @1> <Int 0>
⇒ JGE <LABEL> <Var a> <Var b>

Unused Label Labels that are not referred to by jumps.

Duplicate Labels Labels that are duplicated <LABEL l1>:
<LABEL l2>: ⇒ Removed
JMP <LABEL l2> ⇒ JMP <LABEL l1>

Jump Propagation Jumping to a jump or jumping to next line JMP <LABEL 1>: ⇒ JMP <LABEL 2>
…
<LABEL 1>:
JMP <LABEL 2>

X86 Instruction Selection
● Must deal with gory details regarding valid

operand types (Var vs. Int)
○ Mov instructions are inserted as needed

● Arithmetic/logic instructions map easily to
X86 instructions

○ May need to convert from 3-address to
2-address

● Procedure call is more involved:
○ Backing up registers
○ Pushing arguments
○ Preparing call information for call handler (later)
○ Call the call handler
○ Get return value
○ Throw away arguments
○ Restoring registers

X86 Register Allocation
Extremely simple algorithm:

1. Use AX only for return values and compiler temporary.
2. Pick 8 arbitrary variables and use 8 registers (r8 - r15) for them.
3. Put the rest on the stack.

Array Representation

7

Arrays are stored as pointers. A[0] is the first element. A[-1] is length of the array

Integers, booleans and pointers are all 8 bytes (for simplicity)

Object Representation
Recall that integers, booleans and pointers are all 8 bytes (for simplicity)

Objects are stored in contiguous memory as fields and method pointers. Access to
fields and methods are determined at compile time

f1 f2 f3 f4 method
132

MySuperClass.method1

MySubClass.method1

MySubClass.method2

Instruction Memory

f1 f2 f3 f4 method
140 s1 method

2

Note that fields have consistent offsets from the beginning, while
methods have consistent offsets from the first method, which can be
calculated from the field sizes

Call Handler
● Method calls cannot simply use CALL instructions.

They must support dynamic binding
● The call handler function

Rest of stack

Actual
arguments in
reverse order

Pointer to “this”

Rel. Method Off.

Backed up bp

Return Address

bp

Garbage Dumping: Be nice to the OS
● Record allocated regions and free them all at once when program exits
● Use a global linked stack
● Pros: Easy to implement in assembly
● Cons: Nothing will be freed if the program doesn’t finish running

Running valgrind on TreeVisitor:

Additional Features to Implement (if we had time*)
● Target language optimization

○ Peephole optimization

● Improve instruction selection
● Improve register allocation
● Improve error detection / handling

* **Might** be able to do some of these by Friday

