
2/13/20

1

Optimizing	for
Parallelism	and	Locality
MATERIALS	FROM	CHAPTER	11	OF	THE	NEW	DRAGON	BOOK

MICHAEL	WOLLOWSKI

Introduction
Many	scientific	applications	process	information	stored	in	matrices:
◦ Weather	prediction
◦ Climate	research
◦ Protein	folding
◦ Neural	network	training



2/13/20

2

Challenges
Obvious:	Ensure	validity	of	data

How	to	identify	and	divide	units	of	computation	that	can	run	on	separate	
processors

Ensure	speedup	by	minimizing	inter-processor	communication

Data	locality	(processor	often	accesses	data	used	recently)	aids	in	parallelism

Parallelism	and	locality	are	treated	together	because	they	go	hand	in	hand

To	be	specific,	we	want	to	optimize	data	for	locality	to	use	parallelism

Very	simple	Example
Consider:
◦ for (i = 0; i < 10, i++) z[i] = 0;

Iterations	of	the	loop	write	to	different	locations.	

Different	processors	can	execute	different	locations	concurrently.

If	there	were	to	be	an	additional	statement	in	the	mix,	such	as	z[j] = 1,	then	we	need	to	
determine	whether	i and	j	could	be	the	same.		



2/13/20

3

Focus
We	will	focus	on	data	in	arrays	that	is	accessed	with	simple,	regular	patterns
Affine	array	access:
◦ If	i and	j are	indices,	then	Z[i][j]	and	Z[i][j+1]	are	affine	accesses
◦ A	function	with	one	of	more	variables,	x1,	x2,	…,	xn is	affine if	it	can	be	expressed	as	a	sum	of	a	
constant	plus	constant	multiples	of	the	variable.

◦ Example:	c0 +	c1x1 +	c2x2	+	… +	cnxnwhere	c0 … cn are	constants

Symmetric	Multiprocessors
Symmetricmultiprocessors	share	the	
same	address	space.

To	communicate,	a	processor	can	write	to	
a	memory	location	which	is	then	read	by	
another	processor.

Several	processors	are	allowed	to	keep	
copies	of	the	same	cache	line	at	the	same	
time,	provided	they	only	read	from	it.

If	a	processors	writes	to	the	cache,	copies	
from	all	other	caches	are	removed.

Recall	that	memory	access	is	expensive.



2/13/20

4

Distributed	Memory	Machines
Shared	memory	did	not	scale	well	
beyond	10s	of	processors.

Bus	could	not	keep	up.

Loop-level	Parallelism
Consider:

for (i = 0; i < n; i++) {
z[i] = x[i] – y[i];
z[i] = z[i] * z[i];

}

Parallelizable,	because	each	iteration	accesses	a	different	set	of	data.	

Convert	to:
b = celi(n/M);
for (i = b*p; i < min(n,b*(p+1)); i++) {

z[i] = x[i] – y[i];
z[i] = z[i] * z[i];

}

and	divide	the	iterations	evenly	among	he	processors.	

The	pth processor	is	given	the	pth swath	of	iterations	to	execute.



2/13/20

5

Data	Locality
Consider:

for (i = 0; i < n; i++) z[i] = x[i] – y[i];
for (i = 0; i < n; i++) z[i] = z[i] * z[i];

These	two	loops	are	not	as	advantageous	as	the	prior,	single	loop.
This	is	because	the	prior	loop	may	take	advantage	of	data	locality.
In	other	words,	in	the	prior	loop	the	data	used	for	squaring	is	still	in	the	registers.
There	is	also	just	one	write.

Introduction	to	Affine	Transform	Theory
Data	space.	The	set	of	array	elements	accessed.

Iteration	Space.	The	set	of	combinations	of	values	taken	on	by	the	loop	index.

Processor	space.	The	set	of	processors	in	the	system.

Consider:
float z[100];
for (i = 0; i < 10; i++) z[i+10] = z[i];



2/13/20

6

Matrix	Multiply:	An	In-depth	Example
Consider:



2/13/20

7

Serial	Execution	of	Matrix	Multiplication

Optimizations
Assign	different	rows	to	different	processors.

Decreases	computation	time

However,	increases	communication	time,	i.e.	time	to	transfer	data

Places	a	bottleneck	on	the	bus

Can	slow	down	computation	rather	than	speed	it	up



2/13/20

8

Optimizations	to	Support	Data	Locality
Objective,	reuse	data	while	it	is	still	in	the	cache.

The	matrix	multiplication	algorithm	has	poor	data	locality	and	as	such	many	cache	
misses

Change	data	layout.	
◦ One	could	change	the	layout	of	matrices	to	either	row	or	column	major	order.
◦ This	would	help	since	arrays	are	stored	in	pages	and	entire	pages	are	loaded	into	the	
cache.	

◦ However,	this	does	not	always	work	as	matrices	may	be	accessed	in	different	orders	
during	the	same	algorithm.

Optimizations	to	Support	Data	Locality
Blocking.	
◦ Instead	of	computing	the	result	a	row	or	a	column	at	a	time,	we	divide	the	matrix	into	
submatrices,	or	blocks.		

◦ Reorder	operations	so	an	entire	block	is	used	over	a	short	period	of	time.	
◦ Objective:	decrease	cache	misses.
◦ Ensure	B	is	chosen	so	that	all	of	the	data	fits	into	the	cache.



2/13/20

9

Optimization


