
2/11/20

1

A	Look	at	some	
Compilers
MATERIALS	FROM	THE	DRAGON	BOOK	AND	WIKIPEDIA

MICHAEL	WOLLOWSKI

EQN
oTakes	inputs	like	“E sub 1”	and	produces	commands	for	text	formatter	
TROFF	to	produce	“E1”

2/11/20

2

EQN

EQN
oTreating	EQN	as	a	language	and	applying	compiler	technologies	has	
several	benefits:
oEase	of	implementation.	
oLanguage	evolution.	In	response	to	user	needs

2/11/20

3

Pascal
Developed	by	Nicolas	Wirth.

Generated	machine	code	for	the	CDC	6000	series	machines

To	increase	portability,	the	Pascal-P	compiler	generates	P-code	for	an	abstract	stack	machine.

One	pass	recursive-descent	compiler

Storage	is	organized	into	4	areas:
◦ Code	for	procedures
◦ Constants
◦ Stack	for	activation	records
◦ Heap	for	data	allocated	by	the	new operator.

Procedures	may	be	nested,	hence,	activation	record	for	a	procedure	contains	both	access	and	control	
links.

CDC	6000	series
The	first	member	of	the	CDC	6000	series	was	the supercomputer CDC	6600,	

Designed	by Seymour	Cray and James	E.	Thornton

Introduced	in	September	1964

Performed	up	to	three	million	instructions	per	second,	three	times	faster	than	the IBM	Stretch,	
the	speed	champion	for	the	previous	couple	of	years.

It	remained	the	fastest	machine	for	five	years	until	the CDC	7600 was	launched.

The	machine	was Freon refrigerant	cooled.

Control	Data	manufactured	about	100	machines	of	this	type, selling	for	$6	to	$10	million	each.

2/11/20

4

CDC	6000	series	By	Steve	Jurvetson from	Menlo	Park,	USA	- Flickr,	CC	BY	2.0,	https://commons.wikimedia.org/w/index.php?curid=1114605

CDC	205

CDC	205	DKRZ

2/11/20

5

CDC	205

CDC	205	wiring,	davdata.nl

Pascal

2/11/20

6

Pascal
One	of	the	compiler	writers	states	about	the	use	of	a	one-pass	compiler:
◦ Easy	to	implement
◦ Imposes	severe	restrictions	on	the	quality	of	the	generated	code	and	suffers	from	relatively	
high	storage	requirements.

C
Compiler	for	the	PDP-11:
◦ Two-passes
◦ Optional	third	pass,	to	perform	optimization	(removes	redundant	and	inaccessible	
statements)

2/11/20

7

C

C
Recursive	descent	parser

Parse	everything	except	expressions,	for	which	operator	precedence	is	used

Intermediate	code	consists	of	postfix	notation	for	expressions	and	assembly	code	for	control-
flow	statements.

Storage	allocation	for	local	names	is	done	during	the	first	pass,	so	names	can	be	referred	to	
using	offsets	into	an	activation	record.

Within	back-end,	expressions	are	represented	by	syntax	trees.

In	the	PDP-11	compiler,	code	generation	is	implemented	by	a	tree	walk.

2/11/20

8

PDP-11
The PDP-11 is	a	series	of 16-bit minicomputers sold	by Digital	Equipment	Corporation (DEC)	
from	1970	into	the	1990s,

In	total,	around	600,000	PDP-11s	of	all	models	were	sold,	making	it	one	of	DEC's	most	successful	
product	lines.	

The	PDP-11	is	considered	by	some	experts to	be	the	most	popular	minicomputer	ever.

PDP-11

2/11/20

9

Bliss/11
For	PDP-11

Optimizing	compiler	from	a	world	that	has	ceased	to	exist,	a	world	where	memory	space	was	at	
a	premium	to	the	extent	that	it	made	sense	to	optimize	for	space	rather	than	time.	

Pioneered	the	syntax-directed	approach	to	optimization

It	had	no	goto statements

As	such,	it	was	possible	to	perform	data-flow	analysis	on	the	parse	tree	directly	rather	than	the	
flow	graph.

Bliss/11
BLISS is	a system	programming	language developed	at Carnegie	Mellon	University by W.	A.	
Wulf, D.	B.	Russell,	and A.	N.	Habermann around	1970.	

It	was	perhaps	the	best	known	systems	programming	language	right	up	until C made	its	debut	a	
few	years	later.	

Since	then,	C	took	off	and	BLISS	faded	into	obscurity.	

BLISS	is	a	typeless block-structured	language	based	on	expressions	rather	than	statements,	and	
includes	constructs	for exception	handling, coroutines,	and macros.	It	does	not	include	
a goto statement.

2/11/20

10

Bliss/11

Bliss/11	- LEXSYNFLO
Lexical	analysis	and	parsing

Recursive-descent	parser

Syntax	of	the	language	enables	us	to	build	flow-graph	and	determine	loops	an	loop	entries	as	we	
parse.

Determines	common	subexpressions

Detect	groups	of	similar	expressions

They	are	candidates	for	replacement	by	a	single	subroutine

This	replacement	makes	a	program	run	more	slowly	but	can	save	space

2/11/20

11

Bliss/11	- DELAY
Examines	syntax	tree	to	perform	optimizations:
◦ Invariant	code	motion
◦ Elimination	of	common	subexpressions
◦ Order	of	expression	evaluation
◦ Algebraic	laws	to	determine	whether	reordering	should	be	performed
◦ Decide	whether	it	is	cheaper	to	use	numerical	or	control	flow	evaluation	of	conditional	
expressions.

Bliss/11	- TNBIND
◦ Considers	which	temporary	names	should	be	bound	to	registers
◦ First	group	nodes	of	the	syntax	tree	that	should	be	assigned	the	same	register
◦ Advantage	gained	of	keeping	a	temporary	in	a	register	is	estimated
◦ Registers	are	assigned	until	used	up,	packing	the	most	advantageous	nodes	
into	registers	first

2/11/20

12

Bliss/11	- CODE
◦ Converts	tree	with	its	ordering	and	register	allocation	to	relocatable	machine	
code.

Bliss/11	- FINAL
◦ Repeatedly	performs	peephole	optimization	until	no	further	improvements.
◦ Improvements:
◦ Elimination	of	conditional	and	unconditional	jumps	to	jumps
◦ Complementation	of	conditionals.
◦ Redundant	and	unreachable	code	is	eliminated
◦ Local	propagation	of	constants
◦ Machine	dependent	replacements.
◦ Example:	Replace	jump	instruction	with	PDP-11	branch	instructions

2/11/20

13

Modula-2
Designed	to	produce	good	code.

Using	optimizations	that	provide	high	payoff	for	little	effort

Parser	was	generated	using	Yacc

Produces	syntax	trees	in	two	passes

Intermediate	code	is	P-code	for	compatibility	with	many	Pascal	compilers

Procedure	call	format	agrees	with	that	of	the	Pascal	and	C	compilers	running	under	Berkeley	UNIX

Procedures	in	the	three	languages	can	be	integrated	easily

Optimizations	are	similar	to	those	described	for	Bliss/11

Modula-2

