Grammar:

E-E+E|E%*E|(E)|id

Parsing table:

- set ip to point to the first symbol of w$;
STATE action got() I"Cpe‘t forever begh‘
id + * () $ E let s be the state on top of the stack and
a the symbol pointed to by ip;
0 s3 el el s2 e2 el 1 if action|s, a) = sp(hift s then);)e,;in
1 e3 s4 s5 e3 e2 acc push a then s’ on top of the stack;
2 s3 el el s2 e2 el 6 advance ip to the next input symbol
3 4 4 14 4 4 r4 end
4 $3 el el 2 e2 el 7 else if action|s, a] = reduce A = 3 then begin
5 3 el el 2 e2 el 8 pop 2% |B| symbols off the stack;
let s* be the state now on top of the stack;
6 e3 s4 s5 e3 s9 e4 push A then goto|s’, A] on lpop of the stack;
7 rlrl s5 ol rl rl output the production A - B
8 2 r2 r2 r2 r2 r2 end
9 3 3 3 3 13 r3 else if action|s, a] = accept then
return

Fig. 4.53. LR parsing table with error routines.

E1:

else error()
end

This routine is called from states 0, 2, 4 and 5, all of which expect the beginning of an operand, either an id or a left parenthesis.
Instead an operator, + or *, or the end of the input was found.

Push an imaginary id onto the stack and cover it with state 3 (the goto of states 0, 2, 4 and 5 on id)

Issue diagnostic "missing operand"

E2:

This routine is called from states 0, 1, 2, 4 and 5 on finding a right parenthesis.

Remove the right parenthesis from the input

Issue diagnostic "unbalanced right parenthesis"

E3:

This routine is called from states 1 or 6 when expecting an operator and an id or left parenthesis is found.
Push + onto the stack and cover it with state 4.
Issue diagnostic "missing operator"

E4:

This routine is called from state 6 when the end of the input is found
State 6 expects an operator or a right parenthesis
Push a right parenthesis onto the stack and cover it with state 9
Issue diagnostic “missing right parenthesis”

Complete the following parse of id +)

| Stack

\Input

| Error Message & Action

0

id+)$

