
2/9/20

1

Error	Recovery
MICHAEL	WOLLOWSKI	

BASED	ON	DRAGON	BOOK

Error	recovery	goals
What	should	happen	when	your	parser	finds	an	error	in	the	
user’s	input?
◦ stop	immediately	and	signal	an	error
◦ record	the	error	but	try	to	continue

In	the	first	case,	the	user	must	recompile	from	scratch	after	
possibly	a	trivial	fix

In	the	second	case,	the	user	might	be	overwhelmed	by	a	whole	
series	of	error	messages,	all	caused	by	essentially	the	same	
problem



2/9/20

2

Strategies
Many	different	general	strategies

No	one	strategy	has	proven	itself	to	be	universally	acceptable

However,	a	few	methods	have	broad	applicability.			

We	introduce	the	following	strategies:
◦ panic	mode
◦ phrase	level
◦ error	productions
◦ global	correction

Panic-mode	recovery
Parser	discards	input	symbols	one	at	a	time	until	one	of	a	designated		
set	of	synchronizing	tokens	is	found.				

Typical	synchronizing	tokens:
◦ delimiters,	such	as	a	semicolon,	opening	or	closing	parenthesis

Now	you	know	why	some	programming	languages	separate	statements	
with	semicolons.



2/9/20

3

Panic-mode	recovery	- Evaluation
Simplest	method	to	implement

Can	be	used	by	most	parsing	methods.			

Panic-mode	correction	often	skips	a	considerable	amount	of	input	
without	checking	it	for	additional	errors

Advantage	of	simplicity.

When	multiple	errors	in	the	same	statement	are	rare,	this	method	is	
quite	adequate.

Phrase-level	recovery
On	discovering	an	error,	a	parser	may	perform	local	correction	on	the	
remaining	input

For	example, it	may	replace	a	prefix	of	the	remaining	input	by	some	
string	that	allows	the	parser	to	continue.				

A	typical	local	correction	would	be	to:
◦ replace	a	comma	by	a	semicolon,	
◦ delete	an	extraneous	semicolon,	or	
◦ insert	a	missing	semicolon.			

The	choice	of	the	local	correction	is	left	to	the	compiler	designer.		



2/9/20

4

Phrase-level	recovery	- Evaluation
This	type	of	replacement	can	correct	any	input	string	and	has	been	used	
in	several	error-repairing	compilers.		

The	method	was	first	used	with	top-down	parsing.		

Major	drawback:	Situations	in	which	the	actual	error	has	occurred		
before	the	point	of	detection.

Error	productions
If	we	have	a	good	idea	of	the	common	errors	then	augment	the	
grammar	with	error	productions	that	generate	the	erroneous	
constructs.			

Use	the	grammar	augmented	by	these	error	productions	to	construct	a	
parser.			

If	an	error	production	is	used	by	the	parser,	generate	an	appropriate	
error	diagnostic	message.

We	will	focus	on	this	approach	in	a	few	slides.



2/9/20

5

Global	correction
Ideally,	we	would	like	a	compiler	to	make	as	few	changes	as	possible	in	
processing	an	incorrect	input	string.			

There	are	algorithms	for	choosing	a	minimal	sequence	of	changes	to	
obtain	a	globally	least-cost	correction.		

Given	an	incorrect	input	string	x	and	grammar	G,	these	algorithms	will	
find	a	parse	tree	for	a	related	string	y,	such	that		the	number	of	
insertions,	deletions,	and	changes	of	tokens		required	to	transform	x	
into	y	is	as	small	as	possible.			

Global	correction	- Evaluation
Too	costly.

At	this	time,	they	are	of	theoretical	interest.

The	closest	correct	program	may	not	be	what	the	programmer	had	in	
mind.				

Nevertheless,	the	notion	of	least-cost	correction	provides	a	yardstick	for	
evaluating	error-recovery	techniques

It	has	been	used	for	finding	optimal	replacement	strings	for	phrase-level	
recovery.



2/9/20

6

Top-down	Parsing
An	error	is	detected	during	predictive	parsing	when	the	terminal	top	of	
the	stack	does	not	match	the	next	input	symbol	or	

When	nonterminal	A	is	on	top	of	the	stack,	a	is	the	next	input	symbol,	
and	the	parsing	table	M[A,	a]		is	empty.

Synchronizing	Tokens
As	a	starting	point,	we	can	place	all	symbols	in	FOLLOW(A)	into	the	
synchronizing	set	for	nonterminal	A.			

If	we	skip	tokens	until	an	element	of	FOLLOW(A)	is	seen	and	pop	A	from	
the	stack,	it	is	likely	that	parsing	can	continue.

If	we	add	symbols	in	FIRST(A)	to	the	synchronizing	set	for		nonterminal	
A,	then	it	may	be	possible	to	resume	parsing	according	to	A	if	a	symbol	
in	FIRST(A)	appears	in	the	input.



2/9/20

7

Synchronizing	Tokens
If	a	terminal	on	top	of	the	stack	cannot	be	matched,	a	simple	idea	is	to	
pop	the	terminal,	issue	a	message	saying	that	the		terminal	was	
removed,	and	continue	parsing.

Synchronizing	Tokens



2/9/20

8

Example
Use	of	parsing	table:
◦ If	the	parser	looks	up	entry	M[A,	a]	and	finds		that		it	is	blank,		then		the	
input	symbol	a is	skipped.			

◦ If	the	entry	is	synch,	then	either:	
◦ Pop	the	nonterminal	on	top	of	the	stack	or
◦ Skip	input	until	one	in	First(A)	is	found.			

◦ If	a	token	on	top	of	the	stack	does	not	match	the	input	symbol,	then	we	pop	
the	token	from	the	stack.

We	will	attempt	to	parse:	)	id	*	+	id

Solution



2/9/20

9

Synchronizing	Tokens
It	is	not	sufficient	to	use	FOLLOW(A)	as	the	synchronizing	set	for	A.		

For	example,	if	semicolons	terminate	statements,	as	in	C,	then	keywords	
that	begin	statements	will	not	appear	in	the	FOLLOW	set	of	the	nonterminal	
generating	expressions.				

A	missing	semicolon	after	an	assignment	may	therefore	result	in	the	
keyword	beginning	the	next	statement	being	skipped.	

Often,	there	is	a	hierarchical	structure	on	constructs	in	a	language;	e.g.,	
expressions	appear	within	statements,	which	appear	within	blocks.			

We	can	add	to	the	synchronizing	set	of	a	lower	construct	to	the	symbols	
that	begin	higher	constructs.		

For	example,	we	might	add	keywords	that	begin	statements	to	the	
synchronizing	sets	for	the	nonterminals generating	expressions.

Synchronizing	Tokens
If	a	nonterminal	can	generate	the	empty	string,	then	the	production	
deriving	e can	be	used	as	a	default.				

Doing	so	may	postpone	some	error	detection,	but	cannot		cause	an	
error	to	be	missed.			

This	approach	reduces	the	number	of	non-terminals	that	have	to	be	
considered	during	error	recovery.



2/9/20

10

Bottom-up	Parsing

Bottom-up	Parsing
Error	recovery:	Complete	parsing	table	for	all	symbols.



2/9/20

11

Bottom-up	Parsing

Error	Routines
E1:	
◦ This	routine		is	called	from	states	0,	2,	4	and	5,	all	of	which	expect	the	
beginning	of	an	operand,	either	an	id or	a	left	parenthesis.

◦ Instead	an	operator,	+	or	*,	or	the	end	of	the	input	was	found.
◦ Push	an	imaginary	id onto	the	stack	and	cover	it	with	state	3	(the	goto of	
states	0,	2,	4	and	5	on	id)

◦ Issue	diagnostic	"missing	operand"

E2:
◦ This	routine	is	called	from	states	0,	1,	2,	4	and	5	on	finding	a	right	
parenthesis.

◦ Remove	the	right	parenthesis	from	the	input
◦ Issue	diagnostic	"unbalanced	right	parenthesis"



2/9/20

12

Error	Routines
E3:
◦ This	routine	is	called	from	states	1	or	6	when	expecting	an	operator	and	
an	id	or	left	parenthesis	is	found.

◦ Push	+	onto	the	stack	and	cover	it	with	state	4.
◦ Issue	diagnostic	"missing	operator"

E4:
◦ This	routine		is	called	from	state		6	when	the	end	of	the	input	is	found
◦ State	6	expects	an	operator	or	a	right	parenthesis
◦ Push	a	right	parenthesis	onto	the	stack	and	cover	it	with	state	9
◦ Issue	diagnostic	“missing	right	parenthesis”

Reductions
Change	each	state	that	calls	for	a	particular	reduction	on	some		input	
symbols	by	replacing	error	entries	in	that	state	by	the	reduction.		

This	change	has	the	effect	of	postponing	the	error	detection	until	one	or	
more	reductions	are	made.

However,	the	error	will	still	be	caught	before	any	shift	takes	place.



2/9/20

13

Solution	to	Worksheet

Error	Recovery	in	Lexer
Consider:

fi (a == f(x)) ...

Possible	error-recovery	actions:
◦ Transpose	two	adjacent	characters
◦ Delete	an	extraneous	character
◦ Insert	a	missing	character
◦ Replace	an	incorrect	character	by	a	correct	one


