
12/5/19

1

From	Regular	Expressions	
to	Lexical	Analyzer
RE	→	NFA	→	DFA	→	minimal	DFA	→	Java	code	implementing	minimal	DFA

Michael	Wollowski

Rose-Hulman Institute	of	Technology

Lexical	Analyzer
Input

◦ A	stream	of	bytes
◦ //simple\bexample\nwhile\b(sum\b<\btotal)\b{\n\tsum\b=\bsum\b+\bx;\n}\

n
Output

◦ A	stream	of	words
◦ [while]	[lparen]	[id,sum]	[lt]	[id,total]	[rparen]	[lbrace]	[id,sum]	[equals]	

[id,sum]	[plus]	[id,x]	[semi]	[rbrace]
◦ Notice	that	some	of	the	words	are	categorized

//simple example
while (sum < total) {

sum = sum + x;
}

12/5/19

2

Theoretical	Basis
Lexical	grammars	are	typically	regular

Regular	languages
◦ Can	be	recognized	by	finite	automata	– FA
◦ Can	be	represented	as	regular	expressions

Finite	Automata
Start	state:

Transition,	accepting	state:

12/5/19

3

Finite	Automata
Branching:

Example

12/5/19

4

Formal	Definition	of	a	FA
A	Finite	Automata	(FA)	is	a	5-tuple	(S,	S,	d,	so,	SA),	where:
◦ S is	a	finite	set	of	states,	along	with	an	error	state	se.
◦ S is	a	finite	alphabet.	Typically	S is	the	union	of	the	edge	labels	in	the	
transition	diagram.

◦ d(s	,	c) is	the	transition	function.	It	maps	each	state	s∈ S and	each	
character	c∈ S into	some	next	state.	In	state	si,	with	input	character	
c,	the	FA	takes	the	transition	si

c d(si ,	c)
◦ so∈ S	is	the	designated	start	state.
◦ SA is	the	set	of	accepting	states,	SA⊆ S.	Each	state	in	SA	appears	as	a	
double	circle	in	the	transition	diagram.

Example	FA

12/5/19

5

A	more	complex	FA
What	does	the	following	FA	recognize?

Turning	the	Tables
Draw	an	FA	to	recognize

◦ C++	comments	(i.e.,	//	…)
◦ C	comments	(i.e.,	/*	…	*/)

Q1,2 in groups

12/5/19

6

Regular	Expressions
The	set	of	words	accepted	by	a	Finite	Automaton,	F,	forms	a	language,	
denoted	L(F).

The	transition	diagram	of	the	FA	specifies,	in	precise	detail,	that	language.

For	any	FA,	we	can	also	describe	its	language	using	a	notation	called	
regular	expression	(RE).

Regular	expressions	are	equivalent	to	FAs.

Regular	Expressions
Given	an	alphabet,	∑,	consisting	of
◦ a	non-empty,	finite	set	of	symbols	and
◦ augmented	by	e to	represent	the	empty	string

For	a	given	RE,	we	denote	the	language	that	it	specifies	as	L(r).	

An	RE	is	built	up	from	three	basic	operations:
◦ Alternation:	The	alternation	or	union	of	two	sets	of	strings,	R	and	S,	
denoted	R |	S,	is:	{	x	|	x	∈ R	or	x	∈ S}

◦ Concatenation:	The	concatenation	of	two	sets	of	strings,	R	and	S,	
denoted	RS,	is:	{	xy |	x	∈ R	and	y	∈ S	}

◦ Closure:	The	Kleene	closure	of	a	set	R,	denoted	R*	is	
∪i=0..∞Ri =	{ε}	∪ R	∪ RR	∪ RRR	∪ …

Sometimes,	we	write	R2 for	RR,	R3 for	RRR,	…

12/5/19

7

Convenient	Shorthand
[a-z] denotes	set	of	lowercase	letters

[a-zA-Z] denotes	upper	and	lowercase	letters

r+ is	shorthand	for	rr*

Example
Consider	the	following	FA:

An	equivalent	RE	is:

n	(ew |	ot)

12/5/19

8

Example
Consider	the	following	FA:

An	equivalent	RE	is:

(0	|	[1-9][0-9]*)

Backus-Naur	Form	(BNF)
We	use	BNF	to	specify	MiniJava:

Program ::= (Token | Whitespace)*
Token ::= ID | Integer | ReservedWord | Operator |

Delimiter
ID ::= Letter (Letter | Digit)*
Letter ::= a | ... | z | A | ... | Z
Digit ::= 0 | ... | 9
NonZeroDigit ::= 1 | ... | 9
Integer ::= NonZeroDigit Digit* | 0
ReservedWord ::= class | public | static | extends | void | int |

boolean | if | else | while | return | null |
true | false | this | new | String | main |
System.out.println

Operator ::= + | - | * | / | < | <= | >= | > | == | != | &&
| || | !

Delimiter ::= ; | . | , | = | (|) | { | } | [|]
Whitespace ::= <space> | <tab> | <newline> | Comment
Comment ::= (“//” to end of line, “/*...*/” non-nested block

comments)

12/5/19

9

From	BNF	to	Scanners
BNF	→	RE	→	NFA	→	DFA	→	minimal	DFA	→	Java	code	implementing	
minimal	DFA

From	BNF	to	RE
First	step:	Create	a	regular	expression	based	on	the	specification	of	
MiniJava.

Notice	that	the	BNF	is	specified	through	regular	expressions.

You	have	to	massage	it	a	bit	so	that	the	terminal	states	correspond	to	the	
categories	shown	in	the	Lexer Milestone.

12/5/19

10

In-class	Assignment
Give	an	RE	for	MiniJava identifiers.

They	are	defined	as	follows:

ID ::= Letter (Letter | Digit)*
Letter ::= a | ... | z | A | ... | Z
Digit ::= 0 | ... | 9

From	RE	to	NFA
We	have	three	operations	to	produce	an	NFA,	corresponding	to	the	there	
operations	on	RE:	concatenation,	alternation	and	closure.

We	will	use	what	is	called	Thompson’s	construction.	

The	construction	begins	by	building	trivial	NFAs	for	each	character	in	the	
input	RE.

Next,	it	applies	the	transformations	for	alternation,	concatenation	and	
closure	to	the	collection	of	trivial	NFAs	in	the	order	dictated	by	
precedence	and	parentheses.

Parentheses	have	highest	precedence

Closure	has	higher	precedence	than	concatenation

12/5/19

11

Constructing	an	NFA	for	an	RE
Let’s	construct	an	NFA	for	the	RE:

a	(b|c)*

We’ll	begin	with	constructing	NFAs	for	“a”,	“b”	and	“c”:

From	RE	to	NFA:	Alternation
Next,	we	construct	the	NFA	for	b	|	c

a	(b|c)*

12/5/19

12

From	RE	to	NFA:	Closure

a	(b|c)*

From	RE	to	NFA:	
Concatenation

a	(b|c)*

12/5/19

13

From	RE	to	NFA:	
Concatenation

From	NFA	to	DFA
An	NFA	is	inefficient.

We	would	need	to	perform	backtracking	when	encountering	an	empty	
transitions.

Instead,	we	will	convert	the	NFA	to	a	DFA,	thereby	removing	any	empty	
transitions.

We	will	use	what	is	called	the	Subset	Construction.

12/5/19

14

Subset	Construction
Take	as	input	an	NFA:	(N,	S,	dN,	no,	NA)

Produce	a	DFA:	(D,	S,	dD,	do,	DA)

The	NFA	and	DFA	use	the	same	alphabet	S.

The	DFAs	start	state	do	and	accepting	states DA	will	emerge	from	the	
construction.

The	complex	part	of	the	construction	is	the	derivation	of	the	set	of	DFA	
states	D from	the	NFA	states	N and	the	derivation	of	the	DFA	transition	
function	dD.

Subset	Construction:	Basic	Idea
Given	an	NFA	state,	find	the	ε-reachable	states

Group	these	into	a	single	DFA	state

Find	all	the	reachable	NFA	states	for	each	symbol	in	∑

Rinse,	lather,	repeat

12/5/19

15

Subset	Construction:	Algorithm

Example

12/5/19

16

Example

Example
The	algorithm	takes	the	following	steps:

1. We	initialize	q0 to	e-closure({n0}),	which	is	just	n0.	

2. The	first	iteration	computes	e-closure(Delta(q0,	a)),	which	contains	six	
NFA	states,	as	well	as	e-closure(Delta(q0,	b)) and	e-closure(Delta(q0,	
c)),	which	are	empty.

3. The	second	iteration	of	the	while	loop	examines	q1.	It	produces	two	
configurations	and	names	them	q2 and	q3.

4. The	third	iteration	of	the	while	loop	examines	q2.	It	constructs	two	
configurations,	which	are	identical	to	q2 and	q3.

5. The	fourth	iteration	of	the	while	loop	examines	q3.	Like	the	third	
iteration,	it	reconstructs	q2 and	q3.

12/5/19

17

Example

DFA	Minimization
A	DFA	minimization	algorithm	determines	which	states	are	distinct.	

States	that	are	not	distinct	can	be	merged,	to	create	a	simpler	DFA.

Several	algorithms	and	variants	are	known

12/5/19

18

DFA	Minimization
Let	M	=	(Q,	Σ,	δ,	q0,	F)	be	a	DFA.	

We	define	distinctness	inductively.

Two	states	p and	q are	distinct	if
1. p∈ F	and	q ∉ F or	vice	versa,	or
2. for	some	a∈ Σ,	δ(p,	a)	and	δ(q,	a)	are	distinct

DFA	Minimization
The	algorithm	for	determining	distinct	states	is	as	follows:

1. Create	a	table	with	an	entry	for	each	pair	of	states.	The	entries	are	initially	
blank.

2. For	every	pair	of	states	(p,	q):
• If	p	is	final	and	q	is	not,	or	vice	versa,	mark	the	appropriate	entry	in	the	
table.	

3. Loop	until	no	change	for	an	iteration:
• For	each	pair	of	states	(p,	q)	and	each	character	a in	the	alphabet:	
• If	the	entry	for	p and	q is	blank	and	the	entry	for	δ(p,	a)	and	δ(q,	a))	is	
not blank,	then	mark	the	table	entry.	

• If	a	state	does	not	have	a	transition	for	a	given	symbol,	it	will	remain	in	
that	state,	 when	the	symbol	is	presented.

4. Combine	all	states	that	are	not	distinct	

12/5/19

19

DFA	Minimization	Example
Consider:

Create:	

DFA	Minimization	Example
Initialize:

Loop:	Pick	an	entry	that	is	empty	and	a	symbol	from	the	alphabet	for	
which	we	transition	into	a	marked	entry.
• s1 and	s2 on	e:		s1	

e					s2,	s2
e					s3 and	s2 and	s3 are	marked.

• Indicated	in	the	table	with	“E”,	the	
character	that	justifies	the	entry.

• Similarly	for	the	pair	s1 and	s4 on	e

12/5/19

20

DFA	Minimization	Example
This	will	give	us	more	entries	for	our	table.
Consider	s0 and	s4 on	f:	s0

f s1,	s4
f s4

s1 and	s4 are	marked,	so	we	place	an	F	into	s0 s4

Similarly	for	s0 s2

For	s0 s1 you	need	to	transition	on	i	

The	resulting	table	looks	like	this:

Try	to	create	an	entry	for	s2 s4 or	s3 s5

Can’t	be	done.

DFA	Minimization	Example
Based	on	the	table,	combine	states	s2 s4 and	s3 s5

12/5/19

21

DFA	Minimization	Class	Assignment
Minimize	the	following	DFA

DFA	Minimization	Class	Assignment
Minimize	the	following	DFA

Solution:

12/5/19

22

Implementing	Lexers
Create	an	RE	for	each	syntactic	category.

Convert	to	DFA

Write	code	to	read	a	character	and	simulate	the	DFA.

When	you	recognize	a	word,	i.e.	end	up	in	an	accepting	state,	return	the	
word	and	its	category.

Do	this	until	EOF.

If	your	lexer is	in	a	state	and	there	is	no	transition	on	the	symbol	you	are	
reading:
◦ Roll	back	to	last	accepting	state	encountered	and	report	success
◦ If	there	was	no	accepting	state,	report	failure.

Implementing	Lexers
Three	approaches:
◦ Table-driven,	uses	a	transition	table
◦ Direct-coded,	similar	to	above
◦ Hand-coded

A	surprisingly	large	number	of	commercial	compiler	groups	use	hand-
coded	lexers.

