2/4/20

Reflections on Trusting Trust

Jason Chen, Quinn McKown

Self-reproducing Program* (Stage I)

* Example actually produces a self-reproducing program

char s[] is a string representation of the rest of the program (not including itself)
First printf() and the for loop prints the char s[] array

Second printf() prints the rest of the program

main()
!

inti;

printf(“char\ts[] = {\n");
for(i=0; s[i]; i++)

printf(“\t%d, \n", s[i]);
printf(*%s ", s);

Teaching the Compiler new syntax (Stage II)

e Can add new syntax by self-compiling once
e Once the syntax is introduced, all later versions will support the syntax

¢ = next(),
iflc = "\\")
retumn(c);

c = next(),

iflc == "\\")
return(’\\");

iflc == "n")
retum('\n’);

Original Compiler

¢ = next();

ific '= "\\")
return(c);

c = next();

iflc == "\\")
return("\\");

iflc == 'n")
return{'\ n’);

¢ = next();

ifc 1= "\\")
return(c);

c = next();

iflc == "\\")
return(‘\\'');

iflc == 'n’)
return("\n’);

ifc == "'v’)
return(11);

if(c == 'V’)
return{"\v’);

Training Step

After Training

Injecting Malicious Code (Stage lIl)

e Compiler can be trained to produce malicious code
Compiler can be trained to reinsert the malicious code into future versions of
the compiler, even without the malicious code present in the source code
Extremely difficult to detect

compile(s)
char ss;
{
if(match(s, “pattern”)) |
compile(*bug”);

return;

2/4/20

2/4/20

Moral Implications

You can’t trust code that you did not totally create yourself

There’s no realistic way to avoid running untrusted code

Similar techniques can be used on assemblers, loaders, and even hardware
Other people will have to depend on your code, so don'’t be the bad guy

