1/31/20

Instruction
Scheduling

Instruction Cycles

Not all instructions are equal.
o Load/Store: 3 cycles
o Add: 1 cycle
o Multiply: 2 cycles

Multi-cycle instructions can be interleaved in the processor pipeline

Examples with Cycles

Start |
13
41
53
8 2
103
132
15 3
18 2
20 3

- Operations
lToadAl rarp,@ =
add rLro=
lToadAl rarp,@ =
mit ory,rp =
loadAl rapp,@c =
it rLrp =
ToadAl rapp,@ =
mit rr; =
storeAl ry =

M
M

|
r
r
,

™~

~

"
Farps @a

Start Operations

R I = 7, B ~SER VR N,

w

ToadAl rarp,@2 =
102dAl rarp,@ =
ToadAl rarp, @ =
add r.re =
mlt — rporp =
ToadAl rarp,@d =
milt rprg =
T T
storeAl ry =

N NN & a4 =

22

(a) Original Code

13 (b) Scheduled Code

Constructing a Dependence Graph

data.

Start with the last instruction of a block of code.

Work up, adding arrows indicating which instructions depend on which

1/31/20

a: ToadAl rarp,@ = rg

b: add r,r =nr

c: loadAl rapp,@= 1

d: mult re,rp = rp

‘e: loadAl rarp.@ = rg
fi mult ri,rp = r

g: loadAl rapp,@= 1

h: mult re,rp =)

i: storeAl rj = Tarp,@

(a) Example Code

a

|
N
NS
\/
|

i

(b) Its Dependence Graph

Dependence Graph (Finally a real tree!)

Annotated Dependence Graph

Next, add sums of latencies
to the nodes of the graph:
We will use this information
later for inserting nodes into
a (max) priority queue

al3
l 12
plo €

\\\ // 10

1/31/20

1/31/20

List Scheduling Algorithm

A greedy algorithm. Cycle « 1

Has been used since Ready « leaves of D // Max PriorityQueue
Babbage (I swear!) Active « @ // Queue

Ready is a priority while (Ready U Active % @)
using the latency times for each op e Active
as a criteria for insert, if S(op) + delay(op) < Cycle then

remove op from Active
for each successor s of op in D
if s is ready
then add s to Ready
if Ready # @ then
op <- poll(Ready)
S(op) <« Cycle
add op to Active

Cycle < Cycle + 1

