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Instruction
Scheduling

Instruction Cycles

Not all instructions are equal.
o Load/Store: 3 cycles
o Add: 1 cycle
o Multiply: 2 cycles

Multi-cycle instructions can be interleaved in the processor pipeline




Examples with Cycles
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(a) Original Code

13 (b) Scheduled Code

Constructing a Dependence Graph

data.

Start with the last instruction of a block of code.

Work up, adding arrows indicating which instructions depend on which
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a: ToadAl  rarp,@ = rg

b: add r,r =nr

c:  loadAl  rapp,@= 1

d: mult re,rp = rp

‘e: loadAl rarp.@ = rg
fi mult ri,rp = r

g: loadAl  rapp,@= 1

h:  mult re,rp =)

i: storeAl rj = Tarp,@
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(b) Its Dependence Graph

Dependence Graph (Finally a real tree!)

Annotated Dependence Graph

Next, add sums of latencies
to the nodes of the graph:
We will use this information
later for inserting nodes into
a (max) priority queue
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List Scheduling Algorithm

A greedy algorithm. Cycle « 1

Has been used since Ready « leaves of D // Max PriorityQueue
Babbage (I swear!) Active « @ // Queue

Ready is a priority while (Ready U Active % @)
using the latency times for each op e Active
as a criteria for insert, if S(op) + delay(op) < Cycle then

remove op from Active
for each successor s of op in D
if s is ready
then add s to Ready
if Ready # @ then
op <- poll(Ready)
S(op) <« Cycle
add op to Active

Cycle < Cycle + 1




