Various
Optimization
Techniques

Places for Optimization

source front intermediate code target
—== —s — O
code end code generator code
I 1 I
I] [
i N o
user can compiler can compiler can
profile program improve loops use registers
change algorithm procedure calls select instructions
transform loops address calculations do peephole transformations

1/28/20

Use of Algebraic Identities

x +0=0+x =x
x - 0=

x*» 1 =1=% X =x
x/ 1=x

X *% 2 = X % X
2.0 * x = x + x
x / 2 =x % 0.5

Use of Associative Laws

a :=b c
e :=c +d+ b
a := b + ¢
t :=c + d
e 1=t + b
a := Db + cC
e :=a + d

1/28/20

1/28/20

Control Flow Optimization

We’ll focus on jumps to jumps, including conditional jumps.

Replace goto L1

L1: goto L2

. oto L2
With g, .

L1: goto L2

If there are now no jumps to L1, then we may further simplify to:

goto L2

Control Flow Optimization

Suppose there is only one jump to L1 and it is preceded by an
unconditional goto in:

goto L1

L1: if a < b goto L2
L3:

We can simplify to:

if a < b goto L2
goto L3

L3:

Eliminating Useless Control Flow

- If ablock Bi ends in a jump to Bj
and Bj has only one predecessor ;
- Combine the two blocks 1 = |
B

Combine Blocks

Eliminating Useless Control Flow

- If a block contains only a jump \ / -
- Merge the block into its B

s Ly

B; B;

Remove an Empty Block

1/28/20

1/28/20

Eliminating Useless Control Flow

- If a block ends in a branch, and

both sides of the branch target the
same block L
- Replace the branch with a jump to B; B,
the target block <)
=
B B
Fold a Redundant Branch

Unreachable Code

Consider the following Ccode: #define debug 0

if (debug) {
print debugging information

}

In the intermediate representation, the if-statement may be translated as:

if debug = 1 goto L1

goto L2

L1: print debugging information

L2:

Eliminate jumps over jumps:

if debug # 1 goto L2
print debugging information

L2:

1/28/20

Unreachable Code (Cont’d)

Prior code: if debug # 1 goto L2
print debugging information
L2:

Replace constant debug with its value: .
if 0 # 1 goto L2

print debugging information

L2:
Since conditional evaluates to true, replace i f with goto
goto L2
print debugging information
Finally, eliminate unreachable code: L2: '
L2:

Redundant Loads and Stores

The second instruction is redundant, eliminate it:

(1) MOV RO, a
(2) MOV a, RO

Loop Optimizations: Code Motion

Evaluation of 1imit — 2 below is a loop-invariant.

while (1 <= limit - 2)
Change to:
t = limit - 2;

while (i <= t)

Loop Unswitching

Loop unswitching hoists loop-invariant control-flow operations out of a

loop.
doi=1ton if (x> y) then
if (x> y) Gi=1ton
then a(i) = b{i) » x ‘ '
'| o=
else a(i) = b{i) » y |:> ali) =Db(i) x
else
doi=1ton

ali) =b(i) xy

1/28/20

Inline substitution

fee

1= to foe
~———+1— back

» Saves overhead of procedure calls

e Consider number of times irocedure iets called

Optimization of Basic Blocks

a0 o e

poR Y

+
an Qan

If b is not live after this block,
then we can eliminate the assignment:

d

b + ¢
a-d
d + ¢

1/28/20

User initiated changes

Bentley [1982] relates the following improvement:
> Sorting N elements: replace insertion sort with quicksort
> Improvement from 2.02 N2 to 12 N log, N
> N =100: speedup by 2.5
> N =100,000: speedup by more than a 1,000

Nice, but this is a compiler course, so we will focus on what the
compiler can do.

Quicksort

void quicksort(m,n)

int m,n;
{
int i,J;
int v,x;
if (n <= m) return;

/% fragment begins here =/

i =m-1; j=mn; v =alnl;

while(1) {
do i i+1; while (ali] < v)3
do j j-1; while (al3j]l > v);
if (i »>= j) break;
x = alil; alil = aljl; al3jl = =x;

}

x = al[il; alil = alnl; alnl = x;
/% fragment ends here */
quicksort(m,j); quicksort(i+1,n);

1/28/20

What the Compiler Cannot
See

It cannot optimize.

Certain things cannot be seen at the source, but they may be visible in
intermediate languages such as three-address code.

Quicksort in three-address code

(1M i = m-1 (16) ty = 41
(2) J:i=n (n ty 1= 4x]
(3) t; := 4#n (18) ty 1= alty]
4 v = alt] (19) alt;] = t

(5) i := i+1 (20) tip = 4%3
(6) ty 1= 4%i (21) altp] := x

(7Y t3 1= alt;] (22) goto (5)

(8) if t3 < v goto (5) (23) ty) 1= 4*i
9 j = j-1 (24) x := alt]
(10) t4 1= 4%] (25) tp 1= 4xi
(1) t5 1= a[t4] (26) tiz 1= 4+n
(12) if t5 > v goto (9) 27 ts = altsl]
(|3) if i >= :| gOtO (23) (28) a.[t|2] = t14
(14) tg 1= 4+1i (29) tys 1= 4#n
(15) x := altg] (30) alt;s] := x

1/28/20

10

Flow Graphs

In addition to three-address code, let us also look at the flow graph of

the code.

Flow

Graph of

Three-
Address
Code

B
i = m-1
j :=n
t, := 4*n
v 1= alty]
‘L By
i+1
= 4#i
= alt;]
t; < v goto B
{ B
j o= j-1
ty i= 4%3
ts := alty]
if t5 > v goto Bj
B,
le i>=j goto By |
Bg
t); = 4xi
x = alty]
tp 1= 4xi
t;3 := 4#*n
tiy 1= altp)
altp] = tyu
tys i= 4#*n
altis] = x

1/28/20

11

Function-Preserving Transformations

* In block Bs, eliminate local common subexpressions.
* They often occur when calculating offsets in an array.

Function-Preserving Transformations

* In block Bs, eliminate local common subexpressions.
* They often occur when calculating offsets in an array.

Bs

tg 1= 4xi
x 1= al[tg]
ty = 4*j
to = alty]
altg] := to
a[tg] = X
goto B,

Bs
t(, v= 4xi
X = altg]
t';r 1= 4xi
t“ = 4*j
ty i= altg]
alty] 1= ty
i = 4%)
a[tu)] = X
goto B,

(a) Before

(b) After

1/28/20

12

1/28/20

Function-Preserving Transformations

* Studying the code in B in more detail.

* In particular, look at when i and j are calculated in the
entire program fragment.

* Further simplify B..

Function-Preserving Transformations

* Studying the code in B in more detail.
* In particular, look at when i and j are calculated in the
entire program fragment.

* Further simplify B..
5

tg 1= 4x1i

x = altg] X 1= &4

tg 1= 4x] alty] = %
ty = alty] - alty] = x
a[tﬁ] .= tg goto 32
altg] = x

goto B,

13

Common bim

Subexpressions _ Lrzstt

£, 1= 4xi
ty = alt;]
if t3 < v goto B,

& B,

j o= 3-1

ty 1= 4%]

ts 1= alty]

if ts > v goto Bj;

B,
| if i»=j goto By I

/ T~ B

X 1= t3
ts tyy 1= alt]
x alty] = tyy

alt)] = x

Copy Propagation

Use the rhs location for the lhs location, whenever possible.

X = t; X = t;
af[tz] := ts al[t;] := t5
al[t;] = x ‘ alty] := t3
goto B, goto B,

1/28/20

14

Dead-Code Elimination

Very descriptive name.

X = t;

a[tzl = t5 - a[t2] = t5
a[t4] = t3 a[t4] =t
goto B, goto B,

Loop Optimizations:
Induction Variables and Reduction in Strength

Consider loop around B, in next slide.

In the slide, we only show the relevant information.
Notice that the values of j and t, remain in lock-step.
Every time j decreases by 1, t, decreases by 4

Such identifiers are called induction variables
Changet, = 4 * jto t, =t, - 4

Initialize t, to 4*3j in block above.

1/28/20

15

Loop Optimizations:
Induction Variables and Reduction in Strength

B
B, 1 := m-1
i = m-1 j i=n
J =n ty = 4xn
t, := 4*n v = alty]
v = alty] "
t, = 4%j
l B Lo T o2
: ! B,
—
i B, 1 B
= 31 = 3-1
Ey 2= 4:3 1 = ty4-4
ts 1= alty 1=
s ts 1= alty]
if ts > v goto B; isf s > v goto Bi

B
rif i>=j goto R;:j
B B

Tl

(a) Before (b) After

Bi
[[if i>=3 goto Bo |
B B

SN

More dead code to be cleaned-up

iandjare now B
i:=m-1
j = n
t; := 4#*n
v = a[tll
1ty 1= 4] 4
{ By
—
| B
= j-1
= t4—4
= a[t4]
ts > v goto B3
| By

i>=j goto By
M

1/28/20

16

Result

B

i = m-1
j:=mn
t; 1= 4xn
v = alt]
ty; 1= 4#i
ty 1= 43

l B,
ty; = ty+4
ty = alt;]
if t; < v goto B,

|

B3

ty-4

I"on

ty
ts 1= alty]
if t5 > v goto B,

aftu]
afte]
a[t1]> K

! B
I if t,>=t,; goto BTI :

= alt;]

tll
ts

1/28/20

17

