
1/28/20

1

Various	
Optimization	
Techniques

Places	for	Optimization



1/28/20

2

Use	of	Algebraic	Identities

Use	of	Associative	Laws



1/28/20

3

Control	Flow	Optimization
We’ll	focus	on	jumps	to	jumps,	including	conditional	jumps.

Replace																																										

With

If	there	are	now	no	jumps	to	L1,	then	we	may	further	simplify	to:	

Control	Flow	Optimization
Suppose	there	is	only	one	jump	to	L1 and	it	is	preceded	by	an	
unconditional	goto in:																																										

We	can	simplify	to:



1/28/20

4

Eliminating	Useless	Control	Flow

- If	a	block	Bi ends	in	a	jump	to	Bj
and	Bj has	only	one	predecessor

- Combine	the	two	blocks

Eliminating	Useless	Control	Flow

- If	a	block	contains	only	a	jump
- Merge	the	block	into	its		
successor



1/28/20

5

- If	a	block	ends	in	a	branch,	and	
both	sides	of	the	branch	target	the
same	block	

- Replace	the	branch	with	a	jump	to	
the	target	block	

Eliminating	Useless	Control	Flow

Unreachable	Code
Consider	the	following	C	code:

In	the	intermediate	representation,	the	if-statement	may	be	translated	as:	

Eliminate	jumps	over	jumps:



1/28/20

6

Unreachable	Code	(Cont’d)
Prior	code:

Replace	constant	debug with	its	value:

Since	conditional	evaluates	to	true,	replace	if with	goto

Finally,	eliminate	unreachable	code:

Redundant	Loads	and	Stores
The	second	instruction	is	redundant,	eliminate	it:	



1/28/20

7

Loop	Optimizations:	Code	Motion
Evaluation	of	limit – 2 below	is	a	loop-invariant.

while (i <= limit – 2)

Change	to:

t = limit – 2;

while (i <= t)

Loop	Unswitching
Loop	unswitching	hoists	loop-invariant	control-flow	operations		out	of	a	
loop.	



1/28/20

8

Inline	substitution

• Saves	overhead	of	procedure	calls
• Consider	number	of	times	procedure	gets	called

Optimization	of	Basic	Blocks

If	b	is	not	live	after	this	block,	
then	we	can	eliminate	the	assignment:



1/28/20

9

User	initiated	changes
Bentley	[1982]	relates	the	following	improvement:
◦ Sorting	N	elements:	replace	insertion	sort	with	quicksort
◦ Improvement	from	2.02	N2 to	12	N	log2 N
◦ N	=	100:	speedup	by	2.5
◦ N	=	100,000:	speedup	by	more	than	a	1,000

Nice,	but	this	is	a	compiler	course,	so	we	will	focus	on	what	the	
compiler	can	do.

Quicksort



1/28/20

10

What	the	Compiler	Cannot	
See
It	cannot	optimize.

Certain	things	cannot	be	seen	at	the	source,	but	they	may	be	visible	in	
intermediate	languages	such	as	three-address	code.

Quicksort	in	three-address	code



1/28/20

11

Flow	Graphs
In	addition	to	three-address	code,	let	us	also	look	at	the	flow	graph	of	
the	code.		

Flow	
Graph	of
Three-
Address	
Code



1/28/20

12

Function-Preserving	Transformations
• In	block	B5,	eliminate	local	common	subexpressions.
• They	often	occur	when	calculating	offsets	in	an	array.

Function-Preserving	Transformations
• In	block	B5,	eliminate	local	common	subexpressions.
• They	often	occur	when	calculating	offsets	in	an	array.



1/28/20

13

Function-Preserving	Transformations
• Studying	the	code	in	B5 in	more	detail.	
• In	particular,	look	at	when	i and		j are	calculated	in	the	
entire	program	fragment.

• Further	simplify	B5.

Function-Preserving	Transformations
• Studying	the	code	in	B5 in	more	detail.	
• In	particular,	look	at	when	i and		j are	calculated	in	the	
entire	program	fragment.

• Further	simplify	B5.



1/28/20

14

Common	
Subexpressions

Copy	Propagation
Use	the	rhs location	for	the	lhs	location,	whenever	possible.



1/28/20

15

Dead-Code	Elimination
Very	descriptive	name.

Loop	Optimizations:	
Induction	Variables	and	Reduction	in	Strength
Consider	loop	around	B3 in	next	slide.

In	the	slide,	we	only	show	the	relevant	information.

Notice	that	the	values	of	j and		t4 remain	in	lock-step.

Every	time	j decreases	by	1,	t4 decreases	by	4

Such	identifiers	are	called	induction	variables

Change	t4 = 4 * j to t4 = t4 - 4 

Initialize t4 to 4*j in	block	above.



1/28/20

16

Loop	Optimizations:	
Induction	Variables	and	Reduction	in	Strength

More	dead	code	to	be	cleaned-up
i and	j are	now	



1/28/20

17

Result


