
1/24/20

1

Intermediate	
Representations
SLIDES	SOURCED	FROM	THE	DRAGON	BOOK	AND	
ENGINEERING	A	COMPILER

Introduction
A	parser	performs	at	least	one	pass	over	the	source	code	to	produce	an	
internal	representation	of	the	source	code.

It	performs	at	least	one	pass	over	the	internal	representation	to	
produce	target	code.

A	compiler	worth	its	name	performs	code	optimization;	a	lot	of	it.

The	internal	representation	used	by	the	compiler	to	represent	its	
knowledge	of	the	source	code	is	called	an	intermediate representation
(IR).



1/24/20

2

Introduction

Intermediate	Representations
Three	major	categories:
◦ Structural
◦ Linear
◦ Hybrid



1/24/20

3

Structural	Intermediate	Representations

Representation	of	Syntax	Trees



1/24/20

4

Generation	of	Syntax	Trees

Structural	IRs:	Parse	Trees
Consider	the	block:	{x = 42; y = x / 7.0;}

The	parse	might	look	like	this:	
Block 

Assign Block 

Assign Ident Expr 

Ident Expr 

Term 

Num 

Factor 

Term 

Term Factor 

Factor 

Ident 

Num 

= 

= 

/ 



1/24/20

5

Structural	IRs:	Abstract	Syntax	Trees
A	parse	tree	has	extraneous	nodes.

Structural	IRs:	Abstract	Syntax	Trees
An	Abstract	Syntax	Tree	(AST),	is	like	a	parse	tree	with	extraneous	nodes	
removed.



1/24/20

6

Structural	IRs:	Abstract	Syntax	Trees
Resulting	in	the	following	structure	for	our	block	

{x = 42; y = x / 7.0;}

Linear	IRs
Pseudo-assembly	code	for	some	abstract	machine.

Many	kinds	have	been	used:
◦ One	address	codes.	For	processors	that	have	a	single	accumulator	register	or	
for	stack	machines.	For	a	while	people	built	stack	machines	so	as	to	execute	
Lisp	code	faster.

◦ Two	address	codes.	Two	argument	registers,	but	result	overwrote	one	of	the	
registers.	As	such,	they	have	destructive	operations.	The	PDP-11	had	such	
operations.

◦ Three	address	codes.	For	machines	where	most	operations	take	two	
operands	and	produce	a	result.	The	rise	of	RISC	architectures	made	these	
codes	popular.	



1/24/20

7

Stack-Machine	Code
Operations	performed	by	pushing	operands	on	stack

Like	an	RPN	calculator

Used	in	Java	Virtual	Machine

Example:	 a - 2 * b
push 2
push b
multiply
push a
subtract

Three-Address	Code
Most	operations	have	the	form	i ← j op k
◦ two	operands:	j	and	k
◦ one	operator:	op
◦ one	result:	i



1/24/20

8

Hybrid	Intermediate	Representations
Combination	of	graphs	and	linear	code
Example:	control-flow	graph



1/24/20

9

Structural	IRs:	Control	Flow	Graphs
A	control	flow	graph	(CFG)	is	a	graph	G =	(N, E)	where
◦ Nodes	n	∈ N correspond	to	basic	blocks,	i.e.	sequences	of	operations	that	
execute	together.

◦ Directed	edges	e	∈ E correspond	to	transfer	of	control	between	blocks.

Used	for:
◦ Optimization
◦ Instruction	scheduling
◦ Register	allocation

Example	Control	Flow	Graph

int i = 1;
int j = 1;
while (i < 100) {

j *= i;
i++;

}
f = true;

int i = 1;…

i < 100 j *= i;
i++;

f = true;

start

end



1/24/20

10

Structural	IRs:	Dependence	Graphs
A	dependence	graph is	a	graph	G =	(N, E)	where

Nodes	n	∈ N represent	operations	that
◦ Define	data	– “definition	points”
◦ Use	data	– “use	points”

Directed	edges	e	∈ E from	definition	to	use

Used	for:
◦ Instruction	scheduling
◦ Loop	optimization

Example	Dependence	Graph

1 x = 0;
2 i = 1;
3 while (i < 100) {
4 if (a[i] > 0) {
5 x = x + a[i];
6 }
7 i = i + 1;
8 }
9 print(x);



1/24/20

11


