
1/21/20

1

Implementing	
Type	Checking
SLIDES	BY	MICHAEL	WOLLOWSKI

SECOND	AND	LONG	EXAMPLE	FROM	SLIDES	BY	MICHAEL	D. 	
BOND, 	COMPUTER	SCIENCE	&	ENGINEERING, 	OHIO	STATE	
UNIVERSITY

Overview
We	will	look	at	two	means	of	implementing	type	checking:
◦ Ad-hoc	syntax	directed	parsing	and
◦ Attribute	grammars

1/21/20

2

Ad-hoc	syntax-directed	
translation
In	ad-hoc	syntax-directed	translation	the	actions	required	for	context
sensitive	analysis	are	incorporated	into	the	process	of	parsing	a	context-
free	grammar.

This	is	in	contrast	to	the	attribute	grammar	approach	where	we	modify	
the	grammar.	

In	the	end	of	the	day,	both	approaches	encode	the	same	information.	

Set-up
In	this	scheme,	the	compiler	writer	provides	snippets	of	code	that	
execute	at	parse	time.	

Each	snippet,	or	action,	is	directly	tied	to	a	production	in	the	grammar.	

Each	time	the	parser	recognizes	that	it	is	at	a	particular	place	in	the	
grammar,	the	corresponding	action	is	invoked.	

The	compiler	writer	has	complete	control	over	when	the	actions	
execute.

To	implement	this	in	a	recursive-descent	parser,	the	compiler	writer	
adds	the	appropriate	code	to	the	parsing	routines.	

1/21/20

3

Attribute	Grammars
One	formalism	that	has	been	proposed	for	performing	context-sensitive	
analysis	is	the	attribute	grammar,		or	attributed	context-free	grammar.	

It	is	a	context-free	grammar	augmented	with	a	set	of	rules.

We	augment	each	symbol	in	the	derivation	(or	parse	tree)	with	a	set	of	
attributes

The	rules	specify	how	to	compute	a	value	for	each	attribute

The	attributes	are	divided	into	two	groups:	synthesized	and	inherited.
◦ Synthesized attributes	are	the	result	of	the	attribute	evaluation	rules.
◦ Inherited attributes	are	passed	down	from	parent	nodes.

Attribute	Grammar	Example
Consider	the	following	grammar.

It	describes	signed	binary	numbers.
Number -> Sign List
Sign -> +

| -
List -> List Bit

| Bit
Bit -> 0

| 1

We	would	like	to	build	an	attribute	grammar	that	annotates	Number,	
the	start	symbol	of	this	sample	grammar	with	the	value	of	the	signed	
binary	number	that	it	represents.

1/21/20

4

Attributes
To	build	an	attribute	grammar	from	a	context-free	grammar,	we	must	
decide	what	attributes	each	node	needs.

We	will	then	elaborate	the	productions	with	rules	that	define	values	for	
these	attributes.	

We	annotate	our	grammar	with	the	following	attributes:

Symbol Attributes

Number value

Sign negative

List position,	value

Bit position,	value

Resulting	attribute	grammar
Production Attribution Rules

Number -> Sign List

List.position <- 0
If	Sign.negative
then	Number.value <- -List.value
else	Number.value <- List.value

Sign -> + Sign.negative <- false
Sign -> - Sign.negative <- true

List -> Bit Bit.position <- List.position
List.value <- Bit.value

List0 -> List1 Bit
List1.position <- List0.position	+	1
Bit.position <- List0.position
List0.value	<- List1.value	+	Bit.value

Bit -> 0 Bit.value <- 0
Bit -> 1 Bit.value <- 2Bit.position

1/21/20

5

Attribute	Grammar	Example
Subscripts	are	added	to	grammar	symbols	whenever	a	specific	symbol	
appears	multiple	times	in	a	single	production.	

This	practice	disambiguates	reference	to	that	symbol	in	the		rules.	

Rules	add	attributes	to	the	parse	tree	nodes	by	their	names.

An	attribute	mentioned	in	a	rule	must	be	instantiated	for	every	occurrence	
of	that	kind	of	node.

A	rule	can	pass	information	from	the	production's	lhs	side	to	its	rhs.

A	rule	can	also	pass	information	in	the	other	direction.	

For	example,	the	rules	for	production	4	pass	information	in	both	directions:
◦ The	first	rule	sets	Bit.position to	List.	Position.
◦ The	second	rule	sets	List.value to	Bit.value.

Attribute	Grammar	Practice
Class	exercise:	Parse	-101	to	get	a	sense	of	the	grammar	in	action.

1/21/20

6

Solution	to	Prior	Exercise
The	parse	tree	for	-101:

Attribute	Grammar	Example
Each	rule	implicitly	defines	a	set	of	dependences.

The	attribute	being	defined	depends	on	each	argument	to	the	rule.	

Taken	over	the	entire	parse	tree,	these	dependences	form	an	attribute
dependence		graph.		

Edges	in	the	graph	follow	the	flow	of	values	in	the	evaluation	of	a	rule.

The	edge	from	nodei.fieldj to	nodek.fieldl indicates	that	the	rule	defining	
nodek.fieldl uses	the	value	of	nodei.fieldj as	one	of	its	inputs.	

1/21/20

7

Attribute	Grammar	Example
The	dependence	graph	for	-101:

Attribute	Grammar:	Properties
An	attribute		grammar	is	circular if	it	can,	for	some	inputs,	create	a	
cyclic	dependence		graph.

The	dependence	graph	captures	the	flow	of	values	that	an	evaluator		
must	respect	in	evaluating		an	instance		of	an	attributed		tree.	

If	the	grammar		is	noncircular,	it	imposes	a	partial	order	on	the	
attributes.	

This	partial	order	determines	when	the	rule	defining	each		attribute		
can	be	evaluated.		

Evaluation	order	is	unrelated	to	the	order	in	which	the	rules	appear	in	
the	attribute	grammar.

1/21/20

8

Type	Checking	Example
Consider	the	following	program	fragment.
We	would	like	to	check	whether	the	variables	are	used	correctly.
In	particular,	we	will	check	the	types	of	variables.
For	nested	blocks,	we	will	use	the	innermost	declaration.

begin
bool i;
int j;
begin
int x;
int i;
x := i + j

end
end

Type	Checking	Example
Here	is	the	relevant	part	of	the	grammar:

<prog> ::= <block>
<block> ::= begin <declist>; <stmtlist> end

<declist> ::= <decl>

| <decl> ; <declist>

<decl> ::= int <id>

| bool <id>
<stmtlist> ::= <stmt>

| <stmt> ; <stmtlist>
<stmt> ::= <assign>

| <block>
…

1/21/20

9

Type	Checking	Example
Information	flow	through	the	parse	tree	for	this	language:

Type	Checking	Example
We	will	manage	the	information	flow	with	a	stack	of	symbol	tables

A	symbol	table	is	set	of	pairs	(name,	type)

Build	a	symbol	table	for	the	declarations	in	a	begin-end	block
◦ as	a	synthesized	attribute	tbl

Propagate	a	stack	of	symbol	tables	to	statements
◦ propagate	downwards	on	the	parse	tree	as	an	inherited	attribute	alltbl

1/21/20

10

Type	Checking	Example
Visual	representation	of	stack	of	symbol-tables:

Type	Checking	Example
Augmenting	to	an	attribute	grammar:

<prog> ::= <block>
<block>.alltbl := emptystack

<block> ::= begin <declist>; <stmtlist> end

<stmtlist>.alltbl :=

push(<declist>.tbl, <block>.alltbl)

1/21/20

11

Type	Checking	Example
Augmenting	to	an	attribute	grammar:

<declist>1 ::= <decl>

<declist>1.tbl := <decl>.tbl

| <decl> ; <declist>2

<declist>1.tbl :=

<decl>.tbl ∪ <declist>2.tbl

Cond:	ids(<decl>.tbl)∩ids(<declist>2.tbl)={}

“ids”	is	a	function	that	returns	the	set	of	all	keys	in	the	table.

Type	Checking	Example
Augmenting	to	an	attribute	grammar:

<decl> ::= int <id>
<decl>.tbl := { (id.lexval, INT) }

| bool <id>
<decl>.tbl := { (id.lexval, BOOL) }

1/21/20

12

Type	Checking	Example
Augmenting	to	an	attribute	grammar:

<stmtlist>1 ::= <stmt>
<stmt>.alltbl := <stmtlist>1.alltbl

| <stmt> ; <stmtlist>2
<stmt>.alltbl := <stmtlist>1.alltbl
<stmtlist>2.alltbl :=

<stmtlist>1.alltbl

Type	Checking	Example
Augmenting	to	an	attribute	grammar:

<stmt> ::= <assign>
<assign>.alltbl := <stmt>.alltbl

| <block>
<block>.alltbl := <stmt>.alltbl

1/21/20

13

Type	Checking	Example
Class	exercise	of	parsing	the	code	sample.	(Worksheet)

Type	Checking	Example	(going	further)
We	now	augment	our	grammar	to	handle	assignment	statements	and	
expressions.

<assign> ::= <id> := <intexp>

| <id> := <boolexp>

<boolexp> ::= true | false | <id>

<intexp> ::= <number>

| <id>

| <intexp> + <intexp>

1/21/20

14

Type	Checking	Example	(going	further)
Augmenting	to	an	attribute	grammar:

<assign> ::= <id> := <intexp>

<intexp>.alltbl := <assign>.alltbl

Cond:	typeof(id.lexval,<assign>.alltbl)	=	INT

| <id> := <boolexp>

<boolexp>.alltbl := <assign>.alltbl

Cond:	typeof(id.lexval,<assign>.alltbl)	=	BOOL

To	satisfy	the	condition,	we	look	for	the	most	recent	occurrence	of	“id”	
on	the	symbol-table.

This	implements	scope	properly	and	enables	shadowing.

Type	Checking	Example	(going	further)
Augmenting	to	an	attribute	grammar:

<boolexp> ::= true | false | <id>

Cond:	typeof(id.lexval,<boolexp>.alltbl)	=	BOOL

<intexp>1 ::= <number>

| <id>

Cond:	typeof(id.lexval,<intexp>1.alltbl)	=	INT

| <intexp>2 + <intexp>3

<intexp>2.alltbl := <intexp>1.alltbl

<intexp>3.alltbl := <intexp>1.alltbl

1/21/20

15

Type	Checking	Example	(going	further)
We	can	now	evaluate	the	assignment	statement	in:

