1/17/20

Support for
Object-oriented
Languages

SLIDES ARE A SELECTION AND SIZEABLE MODIFICATION FROM THE
ONES MADE AVAILABLE BY THE AUTHORS OF THE BOOK.

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 412 at Rice University have explicit permission to make copies
of these materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit
educational purposes, provided this copyright notice is preserved.

OO0O: Objects

Each object has an internal state
> Data members
o External access is typically through code members

Each object has a set of associated procedures, or methods

Access to classes, methods and fields can be restricted through
private and protected.

X Z
,

Accessibility in the Java Namespace

1.

2.
3.
4

Code within a method M for object O of class C can see:

Local variables declared within M

All instance variables and class variables of C

All public and protected variables of any superclass of C
Classes defined in the same package as C or in any explicitly
imported package

> public class variables and public instance variables of imported classes
> package class and instance variables in the package containing C

Classes that are nested within its class C

> Complete access to anything in it whether public, private, protected.
> Similar to (2)

If Cis nested inside of another class D, then M has access to
anything in D.

Java Example

}

Class Point {

public int x, y;
public void draw() ;

Class ColorPoint extends Point { // inherits x,y,draw() from Point

Color c; // local data
public void draw() {...} // override (hide) Point’s draw
public void test()
{ y =x; draw(); } // local code
}
Class C {
int x, y; // local data
public void m() // local code

{
Point p = new ColorPoint(); // uses ColorPoint and by
y = p.x; // inheritance the definitions
p.draw() ; // from Point

1/17/20

1/17/20

OO Symbol Tables

To compile method M of object O in class C, the compiler needs:

Lexically scoped symbol table for the current block and its surrounding
scopes
> Just like non-0O0 languages, inner declarations hide outer declarations

Chain of symbol tables for inheritance
o Class C and all of its superclasses
> Need to find methods and instance variables in any superclass

Symbol tables for all global classes (package scope)
> Entries for all members with visibility

> Need to construct symbol tables for imported packages and link them into
the structure in appropriate places

OO Symbol Tables

Conceptually

Lexical Hierarchy Class Hierarchy Global Scope

Search Order: lexical, class, global

Java Symbol Tables

To find the address for a reference to x in method M for an object O of
class C, the compiler must:

For an unqualified use (i.e., x):
> Search the symbol table for the method’s lexical hierarchy
o Search the symbol tables for the receiver’s class hierarchy
o Search global symbol table (current package and imported)
> In each case check visibility attribute of x

For a qualified use (i.e.: Q.x):
> Find Q by the method above
o Search from Q for x
° Must be a class or instance variable of Q or some class it extends
o Check visibility attribute of x

Runtime Structures for OOLs

Object lifetimes are independent

Each object needs an object record (OR) to hold its state
> Independent allocation and deallocation

Classes are treated as objects too
> ORs of classes instantiate the class hierarchy
Object Records
Static private storage for members

Need fast, consistent access 3 The Concept
o Known constant offsets from OR pointer L

fee() fie() foe() | count

0 4 8 12

1/17/20

1/17/20

Object Record Layout

Assume a Fixed-size OR

Data members are at known fixed offsets from OR pointer

Code members occur only in objects of class “class”
> Code vector is a data-member of the class
> Method pointers are at known fixed offsets in the code vector
> Method-local storage kept in method’s AR

Inheritance

Impact on OR Layout

OR needs slots for each member declared, all the way up the class
hierarchy (class, superclass, super-superclass, ...)

Back to Our Java Example — Class Point

ORfora self —]class
1 X
Class Point { Point .
public int x, y;
: OR f
ora
. If —>| class
Class ColorPoint extends Point { ColorPoint ¢ "
Color c;
Y
} What happens if we cast a ¢

ColorPoint to a Point?

Closed Class Structure: Finding Methods

*Mapping of names to methods is static and known (C++)
° Fixed offsets & indirect calls

If ColorPoint inherited draw
from Point, its code vector
would refer to Point's draw.

draw

test

Point ColorPoint
class class
superclass = superclass
code code
\A{ draw |
Class class
X
foo X
% bar y

| bar finds draw at offset O in ColorPoint's code vector

Open Class Structure: Finding Methods

°Dynamic mapping, unknown until runtime

°In general case, need runtime representation of hierarchy
> Lookup by textual name in class’ table of methods

“draw” .

“test”

Point ColorPoint
| class class
superclass 2 superclass
code « 5 code
[draw™ [T e/

Class class

foo X .

v bar y

c

| bar finds draw at offset O in ColorPoint's code vector

1/17/20

Open Class Structure: Finding Methods

Locating an inherited method.

Point ColorPoint
class
superclass =
code [“araw” | «/]
class
f X
00 v bar

class

superclass

code

e [

class

X

y

c

If ColorPoint inherited draw from Point, its code vector would lack a pointer to draw.

+ Perform runtime search through hierarchy
+ This process is expensive
+ Use a "method cache” to speed the search
+ Cache holds <search key, class, method pointer >

1/17/20

