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OO0O: Objects

Each object has an internal state
> Data members
o External access is typically through code members

Each object has a set of associated procedures, or methods

Access to classes, methods and fields can be restricted through
private and protected.
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Accessibility in the Java Namespace
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Code within a method M for object O of class C can see:

Local variables declared within M

All instance variables and class variables of C

All public and protected variables of any superclass of C
Classes defined in the same package as C or in any explicitly
imported package

> public class variables and public instance variables of imported classes
> package class and instance variables in the package containing C

Classes that are nested within its class C

> Complete access to anything in it whether public, private, protected.
> Similar to (2)

If Cis nested inside of another class D, then M has access to
anything in D.

Java Example

}

Class Point {

public int x, y;
public void draw() ;

Class ColorPoint extends Point { // inherits x,y,draw() from Point

Color c; // local data
public void draw() {...} // override (hide) Point’s draw
public void test()
{ y =x; draw(); } // local code
}
Class C {
int x, y; // local data
public void m() // local code

{
Point p = new ColorPoint(); // uses ColorPoint and by
y = p.x; // inheritance the definitions
p.draw() ; // from Point
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OO Symbol Tables

To compile method M of object O in class C, the compiler needs:

Lexically scoped symbol table for the current block and its surrounding
scopes
> Just like non-0O0 languages, inner declarations hide outer declarations

Chain of symbol tables for inheritance
o Class C and all of its superclasses
> Need to find methods and instance variables in any superclass

Symbol tables for all global classes (package scope)
> Entries for all members with visibility

> Need to construct symbol tables for imported packages and link them into
the structure in appropriate places

OO Symbol Tables

Conceptually

Lexical Hierarchy Class Hierarchy Global Scope

Search Order: lexical, class, global



Java Symbol Tables

To find the address for a reference to x in method M for an object O of
class C, the compiler must:

For an unqualified use (i.e., x):
> Search the symbol table for the method’s lexical hierarchy
o Search the symbol tables for the receiver’s class hierarchy
o Search global symbol table (current package and imported)
> In each case check visibility attribute of x

For a qualified use (i.e.: Q.x):
> Find Q by the method above
o Search from Q for x
° Must be a class or instance variable of Q or some class it extends
o Check visibility attribute of x

Runtime Structures for OOLs

Object lifetimes are independent

Each object needs an object record (OR) to hold its state
> Independent allocation and deallocation

Classes are treated as objects too
> ORs of classes instantiate the class hierarchy
Object Records
Static private storage for members

Need fast, consistent access 3 The Concept
o Known constant offsets from OR pointer L
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Object Record Layout

Assume a Fixed-size OR

Data members are at known fixed offsets from OR pointer

Code members occur only in objects of class “class”
> Code vector is a data-member of the class
> Method pointers are at known fixed offsets in the code vector
> Method-local storage kept in method’s AR

Inheritance

Impact on OR Layout

OR needs slots for each member declared, all the way up the class
hierarchy (class, superclass, super-superclass, ...)

Back to Our Java Example — Class Point

ORfora  self —]class
1 X
Class Point { Point .
public int x, y;
: OR f
ora
. If —>| class
Class ColorPoint extends Point { ColorPoint ¢ "
Color c;
Y
} What happens if we cast a ¢

ColorPoint to a Point?




Closed Class Structure: Finding Methods

*Mapping of names to methods is static and known (C++)
° Fixed offsets & indirect calls

If ColorPoint inherited draw
from Point, its code vector
would refer to Point's draw.

draw

test

Point ColorPoint
class class
superclass = superclass
code code
\A{ draw |
Class class
X
foo X
% bar y

| bar finds draw at offset O in ColorPoint's code vector

Open Class Structure: Finding Methods

°Dynamic mapping, unknown until runtime

°In general case, need runtime representation of hierarchy
> Lookup by textual name in class’ table of methods

“draw” .

“test”

Point ColorPoint
| class class
superclass 2 superclass
code « 5 code
[draw™ [T e/

Class class

foo X .

v bar y

c

| bar finds draw at offset O in ColorPoint's code vector
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Open Class Structure: Finding Methods

Locating an inherited method.

Point ColorPoint
class
superclass =
code [ “araw” | «/]
class
f X
00 v bar

class

superclass

code

e [

class

X

y

c

If ColorPoint inherited draw from Point, its code vector would lack a pointer to draw.

+ Perform runtime search through hierarchy
+ This process is expensive
+ Use a "method cache” to speed the search
+ Cache holds <search key, class, method pointer >
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