
1/17/20

1

Support	for	
Object-oriented	
Languages
SLIDES 	ARE 	A 	 SELECT ION 	AND 	S I ZEABLE 	MODIF ICAT ION 	FROM	THE 	
ONES 	MADE 	AVA I LABLE 	BY 	 THE 	AUTHORS 	OF 	THE 	BOOK .

OO:	Objects
Each	object	has	an	internal	state
◦ Data	members	
◦ External	access	is	typically	through	code	members

Each	object	has	a	set	of	associated	procedures,	or	methods

Access	to	classes,	methods	and	fields	can	be	restricted	through	
private and	protected.

Data
Code

x

Data
Code

y Data
Code

z

1/17/20

2

Accessibility	in	the	Java Namespace
Code	within	a	method	M	for	object	O	of	class	C	can	see:
1. Local	variables	declared	within	M	
2. All	instance	variables	and	class	variables	of	C
3. All	public	and	protected	variables	of	any	superclass of	C
4. Classes	defined	in	the	same	package	as	C	or	in	any	explicitly	

imported	package
◦ public	class	variables	and	public	instance	variables	of	imported	classes
◦ package	class	and	instance	variables	in	the	package	containing	C

5. Classes	that	are	nested	within	its	class	C
◦ Complete	access	to	anything	in	it	whether	public,	private,	protected.	
◦ Similar	to	(2)

6. If	C	is	nested	inside	of	another	class	D,	then	M	has	access	to	
anything	in	D.

Java	Example
Class Point {

public int x, y;
public void draw();

}
Class ColorPoint extends Point { // inherits x,y,draw() from Point

Color c; // local data
public void draw() {...} // override (hide) Point’s draw
public void test()
{ y = x; draw(); } // local code

}
Class C {

int x, y; // local data
public void m() // local code
{

Point p = new ColorPoint(); // uses ColorPoint and by
y = p.x; // inheritance the definitions
p.draw(); // from Point

}
}

1/17/20

3

OO	Symbol	Tables
To	compile	method	M	of	object	O	in	class	C,	the	compiler	needs:

Lexically	scoped	symbol	table	for	the	current	block	and	its	surrounding	
scopes	
◦ Just	like	non-OO	languages,	inner	declarations	hide	outer	declarations

Chain	of	symbol	tables	for	inheritance
◦ Class	C	and	all	of	its	superclasses
◦ Need	to	find	methods	and	instance	variables	in	any	superclass

Symbol	tables	for	all	global	classes	(package	scope)
◦ Entries	for	all	members	with	visibility
◦ Need	to	construct	symbol	tables	for	imported	packages	and	link	them	into	
the	structure	in	appropriate	places

OO	Symbol	Tables
Conceptually

Lexical Hierarchy Class Hierarchy Global Scope

Search	Order:	lexical,	class,	global

1/17/20

4

Java	Symbol	Tables
To	find	the	address	for	a	reference	to	x in	method	M	for	an	object	O	of	
class	C,	the	compiler	must:

For	an	unqualified	use	(i.e.,	x):
◦ Search	the	symbol	table	for	the	method’s	lexical	hierarchy
◦ Search	the	symbol	tables	for	the	receiver’s	class	hierarchy
◦ Search	global	symbol	table	(current	package	and	imported)
◦ In	each	case	check	visibility	attribute	of	x

For	a	qualified	use	(i.e.:	Q.x):
◦ Find	Q	by	the	method	above
◦ Search	from	Q	for	x

◦ Must	be	a	class	or	instance	variable	of	Q	or	some	class	it	extends

◦ Check	visibility	attribute	of	x

Runtime	Structures	for	OOLs
Object	lifetimes	are	independent

Each	object	needs	an	object	record	(OR)	to	hold	its	state
◦ Independent	allocation	and	deallocation

Classes	are	treated	as	objects	too
◦ ORs	of	classes	instantiate	the	class	hierarchy

Object	Records

Static	private	storage	for	members

Need	fast,	consistent	access
◦ Known	constant	offsets	from	OR	pointer

fee() fie() foe() count
0 4 8 12

x
The Concept

1/17/20

5

Object	Record	Layout
Assume	a	Fixed-size	OR

Data	members	are	at	known	fixed	offsets	from	OR	pointer

Code	members	occur	only	in	objects	of	class	“class”
◦ Code	vector	is	a	data-member	of	the	class
◦ Method	pointers	are	at	known	fixed	offsets	in	the	code	vector
◦ Method-local	storage	kept	in	method’s	AR

Inheritance
Impact	on	OR	Layout

OR	needs	slots	for	each	member	declared,	all	the	way	up	the	class	
hierarchy	(class,	superclass,	super-superclass,	…)
Back	to	Our	Java	Example	— Class	Point

Class Point {
public int x, y;…

}

Class ColorPoint extends Point {
Color c;…

} What happens if we cast a
ColorPoint to a Point?

OR for a
Point

self
x
y

class

OR for a
ColorPoint self

x
y
c

class

1/17/20

6

Closed Class	Structure:	Finding	Methods
•Mapping	of	names	to	methods	is	static	and	known		(C++)
◦ Fixed	offsets	&	indirect	calls

bar finds draw at offset 0 in ColorPoint’s code vector

If ColorPoint inherited draw
from Point, its code vector
would refer to Point’s draw.

bar
x
y
c

class

ColorPoint

superclass
code
…

class

test
draw

Point

superclass
code
…

class

draw

foo x
y

class

Open Class	Structure:	Finding	Methods
•Dynamic	mapping,	unknown	until	runtime

•In	general	case,	need	runtime	representation	of	hierarchy
◦ Lookup	by	textual	name	in	class’	table	of	methods

bar finds draw at offset 0 in ColorPoint’s code vector

bar
x
y
c

class

“test” •
“draw” •

ColorPoint

superclass
code
…

class

“draw” •

Point

superclass
code
…

class

foo x
y

class

1/17/20

7

Open	Class	Structure:	Finding	Methods
Locating	an	inherited	method.

bar
x
y
c

class

“test” •

ColorPoint

superclass
code
…

class

“draw” •

Point

superclass
code
…

class

foo
x
y

class

If ColorPoint inherited draw from Point, its code vector would lack a pointer to draw.
• Perform runtime search through hierarchy

• This process is expensive
• Use a “method cache” to speed the search

• Cache holds <search key, class, method pointer >

