
1/17/20

1

Garbage	
Collection

Garbage
No,	not	that	stuff!

JOSEPH	EID	VIA	GETTY	IMAGES



1/17/20

2

Garbage
This	is	our	kind	of	garbage:

Two-Space	Copy	Collector
Divide	heap	into	two	spaces:	FromSpace and	ToSpace

Initially	all	allocations	go	to	the	FromSpace

When	there	is	not	sufficient	room	for	an	allocation	request:	garbage	
collector	goes	to	work.

What	to	keep?

Any	data	structure	whose	address	is:
◦ in	a	register	or	
◦ on	the	procedure	call	stack

These	addresses	are	called	the	root	set.



1/17/20

3

Two-Space	Copy	Collector
Goals:
◦ Preserve	all	tuple	that	are	reachable	from	the	root	set	via	a	path	of	pointers,	
i.e.	the	live	tuples,	and

◦ Reclaim	the	memory	of	everything	else,	i.e.	the	garbage.

A	copying	collector	accomplishes	this	by	
1. Copying	all	of	the	live	objects	into	the	ToSpace and	then	
2. Treating	the	ToSpace as	the	new	FromSpace and	the	old	FromSpace as	

the	new	ToSpace.

Copy	Collector	Example



1/17/20

4

Copy	Collector
ToSpace

FromSpace

Copy	Collector	in	Action
(via	Cheney’s	Algorithm)



1/17/20

5

Copy	Collector	in	Action
(via	Cheney’s	Algorithm)

Copy	Collector	in	Action
(via	Cheney’s	Algorithm)



1/17/20

6

Copy	Collector	in	Action
(via	Cheney’s	Algorithm)

Copy	Collector	in	Action
(via	Cheney’s	Algorithm)



1/17/20

7

Data	Representation
The	garbage	collector	needs	to	distinguish	between	pointers	and	other	
kinds	of	data.	

There	are	several	ways	to	accomplish	this.
1. Attached	a	tag	to	each	object	that	identifies	its	type.
2. Store	different	types	of	objects	in	different	regions.
3. Use	type	information	from	the	program	to	either	generate	type-specific	

code	for	collecting	or	to	generate	tables	that	can	guide	the	collector

Dynamically	typed	languages,	such	as	Lisp,	need	to	tag	objects,	so	
option	1	is	a	natural	choice	for	those	languages.	

Option	3	is	the	best-performing	choice	for	statically	typed	languages,	
but	comes	with	a	relatively	high	implementation	complexity.	


