
1/14/20

1

More	on	
Activation	Records
LAST	HALF	OF	SL IDES	ADAPTED	FROM:

VITALY SHMATIKOV ’S SLIDES	ON	

“SCOPE	AND	ACTIVATION	RECORDS”

Control	Abstraction
A	call	graph	may	be	used	to	show	the	set	of	potential	calls	among	
procedures.	

It	consists	of:
◦ One	node	for	each	procedure
◦ One	directed	edge	for	each	possible	procedure	call

An	execution	history	is	the	actual	sequence	of	calls	of	a	particular	call	to	
a	procedure.

1/14/20

2

Call	Graph	Example
public class FooBar {
public static void main(String[] args) {
print(foo(1));

}

static int foo(int n) {
if (n >= 0) {
return bar((int) n *

(Math.random() - 0.5));
} else {
return fie(n);

}
}

static int bar(double r) {
return foo((int) r);

}

static int fie(int n) { return n; }
}

Control	Flow	in	a	Recursive	Language
Scheme:

(define fac
(lambda n)
(if (= n 1)

1
(* n (fac (- n 1))))))

1/14/20

3

More	Complex	Control	Flow
> (define foo #f)
> (define fac

(lambda (n)
(if (= n 1)

(call/cc (lambda (k) (set! foo k) 1))
(* n (fac (- n 1))))))

> (fac 5)
120
> (foo 1)
120

Managing	Lexical	Scope
In	Pascal	or	Scheme	with	shadowing:
◦ Each	variable	declaration	has	a	lexical	address	(a.k.a.	“static	coordinate”)

◦ A	pair	<lexical	depth,	position>

◦ Each	variable	reference	can	be	associated	with	the	address	of	its	declaration
◦ Address	of	varref lets	compiler	generate	access	code

1/14/20

4

Example
(lambda (x y)

((lambda (a)

(x (a y)))

x)

Turns	into:

(lambda 2

((lambda 1

((: 1 0) ((: 0 0) (: 1 1))))

(: 0 0))

Replace	names	with	lexical	address	in	intermediate	representation.

Map	lexical	address	to	memory	locations	for	storing	values.

Translating	Local	Names	
How	does	the	compiler	represent	a	specific	instance	of	x?

Name	is	translated	into	a	static	coordinate
◦ < level,	offset > pair

◦ “level”	is	lexical	nesting	level	of	the	procedure

◦ “offset”	is unique	within	that	scope

Subsequent	code	will	use	the	static	coordinate	to	generate	
addresses	and	references

“level”	is	a	function	of	the	table	in	which	x is	found
◦ Stored	in	the	entry	for	each	x

“offset”	must	be	assigned	and	stored	in	the	symbol	table
◦ Assigned	at	compile	time

◦ Known	at	compile	time

◦ Used	to	generate	code	that	executes at	run-time

1/14/20

5

Establishing	Addressability
Access	&	maintenance	cost	varies	with	level

All	accesses	are	relative	to	ARP (r0)

Assume
• Current lexical level is 2
• Access link is at ARP – 4
• ARP is in r0

Static
Coordinate

Generated Code

<2,8> loadAI r0,8 Þ r10

<1,12> loadAI r0,-4 Þ r1

loadAI r1,12 Þ r10

<0,16> loadAI r0,-4 Þ r1

loadAI r1,-4 Þ r1

loadAI r1,16 Þ r10

Activation	Records	Revisited
Function
fact(n)	=	if	n<=1		then	1

else	n	*	fact(n-1)
◦ Return	result	address:
location	to	put	fact(n)

Parameter
◦ Set	to	value	of	n	by	calling	sequence

Intermediate	result
◦ Locations	to	contain	value	of	fact(n-1)

Control link

Local variables

Intermediate results

Environment
pointer

Parameters

Return address

Return result addr

1/14/20

6

Typical	x86	Activation	Record

frame pointer

stack pointer

Run-Time	Stack
Activation	records	are	kept	on	the	stack
◦ Each	new	call	pushes	an	activation	record
◦ Each	completing	call	pops	the	topmost	one
◦ Stack	has	all	records	of	all	active	calls	at	any	moment	during	execution	(topmost	
record	=	most	recent	call)

Example:	fact(3)
◦ Pushes	one	activation	record	on	the	stack,	calls	fact(2)
◦ This	call	pushes	another	record,	calls	fact(1)
◦ This	call	pushes	another	record,	resulting	in	three	activation	records	on	the	stack

1/14/20

7

Function	Return
Control link

fact(n-1)
n

Return-result addr
3

fact(3)

Control link

fact(n-1)
n

Return-result addr

1
2

fact(2)

Control link

fact(n-1)
n

Return-result addr
1

fact(1)

fact(n) = if n<=1 then 1
else n * fact(n-1)

Control link

fact(n-1)
n

Return-result addr

2
3

fact(3)

Control link

fact(n-1)
n

Return-result addr

1
2

fact(2)

High
addresses

Low
addresses

Scope

var x=1;
function g(z) { return x+z; }
function f(y) {

var x = y+1;
return g(y*x);

}
f(3);

x 1

x 4
y 3

z 12

outer block

f(3)

g(12)

Which x is used for expression x+z ?

1/14/20

8

Scope	and	Activation	Records

Control	link
◦ Link	to	activation	record	of	previous	
(calling)	block

Access	link
◦ Link	to	activation	record	of	closest	
lexically	enclosing	block	in	program	
text

Control link

Local variables

Intermediate results

Parameters

Return address

Return result addr

Access link

Static	Scope	with	Access	Links
var x=1;
function g(z) = { return x+z; }
function f(y) = {

var x = y+1;
return g(y*x);

}
f(3);

x 1

x 4
y 3

z 12

outer block

f(3)

g(12) control link
access link

g …

f …

control link
access link

control link
access link

access link
control link

Use access link to find global variable:
- Access link is always set to frame of
closest enclosing lexical block

- For function body, this is the block that
contains function definition

1/14/20

9

Example	of	Tail	Recursion

fun	f(x,y)	=	
if	x>y	then	x	
else	f(2*x,	y);

f(1,3)	+	7;

control
return val
x 1
y 3

control
return val
x 1
y 3

control
return val
x 2
y 3

control
return val
x 4
y 3

f(1,3) Optimization
• Set return value

address to that of
caller

Calculate least power of 2 greater than y

Tail	Recursion	Elimination			

control
return val
x 1
y 3

f(4,3)

Optimization
• reuse activation record in place

control
return val
x 2
y 3

f(1,3)

control
return val
x 4
y 3

f(2,3)

fun f(x,y) =
if x>y then x
else f(2*x, y);

f(1,3) + 7;

1/14/20

10

Tail	Recursion	and	Iteration			

control
return val
x 1
y 3

f(4,3) / g(3)

control
return val
x 2
y 3

f(1,3) / g(3)

control
return val
x 4
y 3

f(2,3) / g(3)

function g(y) {
var x = 1;
while (!x>y)

x = 2*x;
return x;

}

fun f(x,y) =
if x>y then x
else f(2*x, y);

f(1,3) + 7;

Pass	Function	as	Argument
There	are	two	declarations	of x
Which	one	is	used	for	each	
occurrence	of	x?

var x = 4;
function f(y) {return x*y;}
function g(h) {

var x = 7;
return h(3) + x;

}
g(f);

1/14/20

11

Static	Scope	for	Function	Argument

x 4

h

y 3

f

g

Code
for f

Code
for gg(f)

h(3)

x * y

x 7

follow access link
local var

var x = 4;
function f(y) {return x*y;}
function g(h) {

var x = 7;
return h(3) + x;

}
g(f);

Closures
Function	value	is	pair	closure	=	áenv,	code	ñ
◦ Idea:	statically	scoped	function	must	carry	a	link	to	its	static	environment	with	it

When	a	function	represented	by	a	closure	is	called…
◦ Allocate	activation	record	for	call	(as	always)
◦ Set	the	access	link	in	the	activation	record	using	the	environment	pointer	from	
the	closure

1/14/20

12

Function	Argument	and	Closures

var x	=	4;
function	f(y)	{return	x*y;}
function	g(h)	{
var x	=	7;
return	h(3)	+	x;

}
g(f);

x 4

access link set
from closure

Code
for f

f
access

Run-time stack with access links

Code
for g

h(3)
y 3

access

g(f)
h

access

x 7

g
access

Summary:	Function	
Arguments
Use	closure	to	maintain	a	pointer	to	the	static	environment	of	a	
function	body

When	called,	set	access	link	from	closure

All	access	links	point	“up”	in	stack
◦ May	jump	past	activation	records	to	find	global	vars
◦ Still	deallocate	activation	records	using	stack	(last-in-first-out)	order

