1/14/20

More on
Activation Records

LAST HALF OF SLIDES ADAPTED FROM:
VITALY SHMATIKOV’S SLIDES ON
“SCOPE AND ACTIVATION RECORDS”

Control Abstraction

A call graph may be used to show the set of potential calls among
procedures.

It consists of:
> One node for each procedure
> One directed edge for each possible procedure call

An execution history is the actual sequence of calls of a particular call to
a procedure.




Call Graph Example

public class FooBar ({
public static void main(String[] args) {
print(foo(l));
}

static int foo(int n) {
if (n >= 0) {
return bar((int) n *
(Math.random() - 0.5));

} else {
return fie(n);
}
}

static int bar (double r) {
return foo((int) r);

}

static int fie(int n) { return n; }

Control Flow in a Recursive Language

Scheme:
(define fac
(lambda n)
(if (=n 1)
1
(* n (fac (- n 1))))))

1/14/20



1/14/20

More Complex Control Flow

> (define foo #£)
> (define fac
(lambda (n)
(if (=n 1)
(call/cc (lambda (k) (set! foo k) 1))
(* n (fac (- n 1))))))

> (fac 5)
120
> (foo 1)
120

Managing Lexical Scope

In Pascal or Scheme with shadowing:
> Each variable declaration has a lexical address (a.k.a. “static coordinate”)
° A pair <lexical depth, position>
° Each variable reference can be associated with the address of its declaration
> Address of varref lets compiler generate access code




1/14/20

Example

(lambda (x y)
((lambda (a)
(x (2 y)))

x)

Turns into:
(lambda 2
((lambda 1
((: 10) ((: 00) (:11))))
(: 00))
Replace names with lexical address in intermediate representation.

Map lexical address to memory locations for storing values.

Translating Local Names

How does the compiler represent a specific instance of x ?

Name is translated into a static coordinate
o <level, offset > pair
o “level” is lexical nesting level of the procedure
o “offset” is unique within that scope
Subsequent code will use the static coordinate to generate
addresses and references
“level” is a function of the table in which x is found
> Stored in the entry for each x
“offset” must be assigned and stored in the symbol table

> Assigned at compile time
> Known at compile time

> Used to ienerate code that executes at run-time




Establishing Addressability

Access & maintenance cost varies with level

All accesses are relative to ARP (r)

Static Generated Code Assume

Coordinate e Current lexical level is 2
<2,8> loadAl ry,8 = o * Access link is at ARP - 4
<1,12> loadAl rp,-4 = * ARPisinrg

loadAl r,12 =g
<0,16> loadAl rp,-4 =1,

loadAl r,-4 =1

loadAl r,16 =g

Activation Records Revisited

Function
fact(n) = if n<=1 then 1
else n * fact(n-1)
° Return result address:
location to put fact(n)

Parameter
° Set to value of n by calling sequence

Intermediate result
> Locations to contain value of fact(n-1)

Environment
pointer

]

1/14/20



1/14/20

Typical x86 Activation Record

Caller's activiation higher memory addresses

frame

old sp .

caller saves
77777 a}gili T | fp+ offset

Callee’s activiation .
frame saved registers

,,,,,,,,,,,,,, < fp callee saves
local variables fp - offset

XX
R
X
XXX
XK
X
XXX

Next activiation oot ot tetetetotetoteted eletete !

frame to be called KRR RS xm lower memory addresses

Run-Time Stack

Activation records are kept on the stack
> Each new call pushes an activation record

> Each completing call pops the topmost one
> Stack has all records of all active calls at any moment during execution (topmost
record = most recent call)
Example: fact(3)
o Pushes one activation record on the stack, calls fact(2)
> This call pushes another record, calls fact(1)
° This call pushes another record, resulting in three activation records on the stack




1/14/20

Function Return

| fact(3) ! fact(3)

|

L.

fact(2) fact(2)

fact(1)

fact(n) = if n<=1 then 1
else n * fact(n-1)

Scope

Which x is used for expression x+z ?

var x=1; outer block _
function g(z) { return x+z; }

var x = y+1;

return g(y*x);
) o(12) [ TE2T

f(3);




Scope and Activation Records

s Control link

i ° Link to activation record of previous
(calling) block

Access link

o Link to activation record of closest
lexically enclosing block in program
text

Static Scope with Access Links

outer block
var x=1;

function g(z) = { return x+z; }
function f(y) = {

var X = y+1;
return g(y*x);
by
f(3);
(3) 3)

Use access link to find global variable:
- Access link is always set to frame of
closest enclosing lexical block
- For function body, this is the block that
contains function definition g(12)

1/14/20



Example of Tail Recursion

| Calculate least power of 2 greater than y |

Optimization
e Set return value
address to that of

f(1,3)

caller

fun f(x,y) =
if x>y then x
else f(2*x, y);
f(1,3) + 7;

Tail Recursion Elimination

f(1,3) f(2,3) f(4,3)

fun f(x,y) = Optimization
if x>y then x e reuse activation record in place
else f(2*x, y);

f(1,3) + 7;

1/14/20



Tail Recursion and Iteration
f(1,3) / 9(3) f(2,3) / 9(3) f(4,3) / 9(3)
fun f(x,y) = function g(y) {

. var X = 1;

If x>y tljken X ) while (Ix>y)

else f(2*x, y); X = 2%
f(1,3) + 7; return x;

}

Pass Function as Argument

There are two declarations of x var x = 4;
Which one is used for each function f(y) {return x*y;}
occurrence of x? function g(h) {
varx =7;
return h(3) + x;
b
a(f);

1/14/20

10



Static Scope for Function Argument

var x = 4;
function f(y) {return x*y;}
function g(h) {

varx =7;

return h(3) + x;
b g(f)
a(f);

O
>|<Q)%cal var

follow access link

Closures

Function value is pair closure = (env, code )
o ldea: statically scoped function must carry a link to its static environment with it

When a function represented by a closure is called...
> Allocate activation record for call (as always)

> Set the access link in the activation record using the environment pointer from
the closure

1/14/20

11



Function Argument and Closures

Run-time stack with access links

var x = 4;
function f(y) {return x*y;}
function g(h) {

varx =17,

re=n h(3) + x;
}
g(f);

access link set
from closure

Summary: Function
Arguments

Use closure to maintain a pointer to the static environment of a
function body

When called, set access link from closure

All access links point “up” in stack
> May jump past activation records to find global vars
o Still deallocate activation records using stack (last-in-first-out) order

1/14/20

12



