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Criteria for Programs

Elegant and concise mathematical description
Notion of storage

Reducible to simpler programs

Clear expressions of computation




Classifications of Models

e Simple Operational Model: Turing Machines
o Not clear
o Not conceptually helpful
e Applicative Model: Lambda Calculus
o No storage
o Not historically sensitive

e \Von Neumann Model: conventional programming languages
o Not elegant or concise

Problems with von Neumann languages

Word-at-a-Time bottleneck

Complex Frameworks

Few changeable parts with little expressive power
No useful mathematical properties
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Alternatives to von Neumann languages

e Functional Programming Systems (FP Systems)
o Built on the idea of combining new functions from existing functions
o The goal is to program to build functions without variables
o All functions map objects to objects and only take one argument
e Applicative State Transition Systems (AST Systems)
o Keeps history sensitivity
o Loosely coupled to states
o Underlying Applicative System
e Formal Functional Programming (FFP) Systems
o FP Systems have a major limiting factor where new functional forms cannot be made
o FFP Systems allow for one to create new functional forms

Functional Programming (FP) Systems

Examples of Objects:
o <A, <<B>, C>, D>
f:x denotes an application. For example:
o +<12>=3
Functions are either provided primitive functions or functional forms
o Primitive functions are basic functions supplied by the system
o Functional forms are composed of multiple functions
Definitions assign a function symbol to a functional form
o Defl=r
m |is functional symbol and r is the functional form
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Applicative State Transition (AST) Systems

e 3 Elements:
o Applicative subsystem
o State ‘D’
o State Transition Rules
e States persist during computation
o Outputs and New State

Subsystem
State Computation

Output
New
‘ State




