1/10/20

Can Programming be
Liberated from the von
Neumann Style?

Manoj Kurapati and Leela Pakanati

Criteria for Programs

Elegant and concise mathematical description
Notion of storage

Reducible to simpler programs

Clear expressions of computation




Classifications of Models

e Simple Operational Model: Turing Machines
o Not clear
o Not conceptually helpful
e Applicative Model: Lambda Calculus
o No storage
o Not historically sensitive

e \Von Neumann Model: conventional programming languages
o Not elegant or concise

Problems with von Neumann languages

Word-at-a-Time bottleneck

Complex Frameworks

Few changeable parts with little expressive power
No useful mathematical properties

1/10/20




1/10/20

Alternatives to von Neumann languages

e Functional Programming Systems (FP Systems)
o Built on the idea of combining new functions from existing functions
o The goal is to program to build functions without variables
o All functions map objects to objects and only take one argument
e Applicative State Transition Systems (AST Systems)
o Keeps history sensitivity
o Loosely coupled to states
o Underlying Applicative System
e Formal Functional Programming (FFP) Systems
o FP Systems have a major limiting factor where new functional forms cannot be made
o FFP Systems allow for one to create new functional forms

Functional Programming (FP) Systems

Examples of Objects:
o <A, <<B>, C>, D>
f:x denotes an application. For example:
o +<12>=3
Functions are either provided primitive functions or functional forms
o Primitive functions are basic functions supplied by the system
o Functional forms are composed of multiple functions
Definitions assign a function symbol to a functional form
o Defl=r
m |is functional symbol and r is the functional form




1/10/20

Applicative State Transition (AST) Systems

e 3 Elements:
o Applicative subsystem
o State ‘D’
o State Transition Rules
e States persist during computation
o Outputs and New State

Subsystem
State Computation

Output
New
‘ State




