
1/10/20

1

Arrays	and	Strings
SOME	OF	THE	SLIDES	ARE	FROM:

Array	References
Storage	schemes
Row-major	order																																																		(most	languages)

Lay	out	as	a	sequence	of	consecutive	rows

Rightmost	subscript	varies	fastest

A[1,1],	A[1,2],	A[1,3],	A[2,1],	A[2,2],	A[2,3]

Column-major	order																																																							(Fortran)
Lay	out	as	a	sequence	of	columns

Leftmost	subscript	varies	fastest

A[1,1],	A[2,1],	A[1,2],	A[2,2],	A[1,3],	A[2,3]

Indirection	vectors																																																												(Java)
Vector	of	pointers	to	pointers	to	…	to	values

Takes	much	more	space,	trades	indirection	for	arithmetic

1/10/20

2

Laying	Out	Arrays
The	Concept

Row-major	order

Column-major	order

Indirection	vectors

1,1 1,2 1,3 1,4 2,1 2,2 2,3 2,4A

1,1 2,1 1,2 2,2 1,3 2,3 1,4 2,4A

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4
A

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4
A

These can have
distinct & different
cache behavior

Computing	an	Array	Address
A[i]
In	general:	base(A)	+	(i	– low)	x	sizeof(A[1])
Depending	on	how	A	is	declared,	base(A)	may	be:	
◦ an	offset	from	the	ARP,	

◦ an	offset	from	some	global	label,	or	

◦ an	arbitrary	address.

The	first	two	are	compile	time	constants.

Almost always a power
of 2, known at compile-time
Þ use a shift for speed

1/10/20

3

Computing	an	Array	Address
A[i]
@A +	(i – low)	x sizeof(A[1])
In	general:	base(A)	+	(i – low)	x	sizeof(A[1])

Almost always a power of
2, known at compile-time
Þ use a shift for speedint A[1:10] Þ low is 1

Make low 0 for faster
access (saves a –)

Computing	an	Array	Address
A[i1,	i2]

Row-major	order:

@A	+	((i1 – low1)	x	(high2 – low2 + 1)	+ i2 – low2)	x sizeof(A[1,1])

Column-major	order:
@A	+	((i2 – low2)	x	(high1 – low1 + 1)	+	i1 – low1)	x	sizeof(A[1,1])

Indirection	vectors:

*(A[i1])[i2] — where		A[i1]	is,	itself,	a	1-d	array	reference

e.g., @A + (i1 – low) x sizeof(A[1])

1/10/20

4

Example
Calculate	address	A[3,5]	in:

1			2				3			4			5			6
1
2
3
4
5

Using:	@A	+	((i1	– low1)	x	(high2	– low2	+	1)	+	i2	– low2)	x	sizeof(A[1,1])

And	using:	@A	+	((i2 – low2)	x	(high1 – low1 +	1)	+	i1 – low1)	x	sizeof(A[1,1])

Optimizing	Address	Calculation
In	row-major	order.
Start	with:
@A	+	((i	– low1)	*	(high2 – low2 +	1)	+ j – low2)	*	w
Distribute	to:
@A	+	(i	– low1)	*	(high2	– low2	+	1)	*	w	+	(j	– low2)	*	w

Factor	into:
@A	+	i	* (high2–low2+1)	* w	+	j	*	w		– low1 *	(high2–low2+1)	*	w	- low2 *	w

If		lowi,	highi,	and	w	are	known,	the	last	two	terms	are	a	constant
Define	@A0 as:			@A	– low1 * (high2–low2+1)	*	w	- low2 *	w
and	len2 as	(high2-low2+1)	
Then,	the	address	expression	becomes:				@A0 +	(i	*	len2 +	j)	*	w

where w = sizeof(A[1,1])

1/10/20

5

Array	Address	Calculations
Array	address	calculations	are	a	major	source	of	overhead
•Scientific	applications	make	extensive	use	of	arrays	and	array-like	
structures
◦ Computational	linear	algebra,	both	dense	and	sparse	matrices

•Non-scientific	applications	use	arrays,	too
◦ Representations	of	other	data	structures
®Hash	tables,	adjacency	matrices,	tables,	structures,	…

Array	calculations	tend	iterate	over	arrays
•Loops	execute	more	often	than	code	outside	loops
•Array	address	calculations	inside	loops	make	a	huge	difference	in	
efficiency	of	many	compiled	applications

Array	Address	Calculations	in	a	Loop
Naïve: Perform	the	address	calculation	twice:
DO	j	=	1,	N
R1	=	@A0 +	(j	* len1 +	i)	* sizeof(A[1,1])
R2 = @B0 +	(j	* len1 +	i)	* sizeof(A[1,1])
MEM(R1)	=	MEM(R1)	+	MEM(R2)
END	DO

1/10/20

6

Array	Address	Calculations	in	a	Loop

DO	j	=	1,	N
R1	=	@A0 +	(j	* len1 +	i)	* sizeof(A[1,1])
R2 = @B0 +	(j	* len1 +	i)	* sizeof(A[1,1])
MEM(R1)	=	MEM(R1)	+	MEM(R2)
END	DO

R1	=	i *	sizeof(A[1,1])
c	=	len1	x	sizeof(A[1,1])			
R2	= @A0 +	R1
R3	=	@B0 +	R1
DO	j	=	1,	N
a	=	j	*	c
R4	=	R2	+	a
R5 = R3	+	a
MEM(R4)	=	MEM(R4)	+	MEM(R5)
END	DO

More	sophisticated:	Move	common	calculations	out	of	loop

Array	Address	Calculations	in	a	Loop

Even	more	sophisticated:	Use	addition	rather	than	multiplication

R1	=	i *	sizeof(A[1,1])
c	=	len1	x	sizeof(A[1,1])			
R2	=	@A0 +	R1
R3	=	@B0 +	R1
DO	j	=	1,	N
a	=	j	*	c	
R4	=	R2	+	a
R5 = R3	+	a
MEM(R4)	=	MEM(R4)	+	MEM(R5)
END	DO

R1	=	i	*	sizeof(A[1,1])
c	=	len1	* sizeof(A[1,1])
R2	=	@A0 +	R1	
R3	=	@B0 +	R1
DO	J	=	1,	N
R2	=	R2	+	c
R3 = R3	+	c
MEM(R2)	=	MEM(R2)	+	MEM(R3)
END	DO

1/10/20

7

Representing	Strings
Two	common	representations

Explicit	length	field

Null	termination

a s t r i n g \0b

@b

Length field may
take more space
than terminator

@b

s t r i n gb8 a

