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Arrays and Strings
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Array References

Storage schemes

Row-major order (most languages)
Lay out as a sequence of consecutive rows
Rightmost subscript varies fastest

A[1,1], A[1,2], A[1,3], A[2,1], A[2,2], A[2,3]

Column-major order (Fortran)
Lay out as a sequence of columns
Leftmost subscript varies fastest
Al1,1], A[2,1], A[1,2], A[2,2], A[1,3], A[2,3]

Indirection vectors (Java)
Vector of pointers to pointers to ... to values

Takes much more space, trades indirection for arithmetic




Laying Out Arrays

The Concept 5 | b1 [12]1.3]1.4

These can have
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distinct & different

cache behavior

Row-major order A | 1,1 | 1,2 | 1

3|14|21]22]23]24]

Column-major order A | 1,1 | 2,1 | 1,

2[22[13]|23]14]24]

Indirection vectors A

1412 1,3]14]

21 ]22]23]24]

Ali]

> an offset from the ARP,
> an offset from some global label, or

° an arbitrary address.

Computing an Array Address

In general: base(A) + (i —low ) x sizeof(A[1])
Depending on how A is declared, base(A) may be:

The first two are compile time constants.
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Computing an Array Address

Ali] Color Code:
Tnvari
@A + (i—low ) x sizeof(A[1]) nvariant

In general: base(A) + (i—low ) x sizeof(A[1])

AITOST always a pfwer‘ of
; : ; 2, known at compile-time
int A[1:10] = low is 1 0 .

Make[low %) for faster = use a shift for speed
access (savesa-)

Computing an Array Address

Aliy, iy Color Code:
Invariant

Row-major order:

@A + (( iy —low; ) x (high, = low, + 1) + i, — low,) x sizeof(A[1,1])
A[1,1], Al1,2], A[1,3], Al2,1], A[2,2], A[2,3]

Column-major order:
@A+ (( i, —low, ) x (high, — low, + 1) +i; — low,) x sizeof(A[1,1])

Indirection vectors:

*(Ali; )i,] — where Alij] is, itself, a 1-d array reference

Z_‘ e.g., @A + (i; - low ) x sizeof(A[1]) |
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Example

Calculate address A[3,5] in:
12 3456

u b W N

Using: @A + (( i1 —low1 ) x (high2 —low2 + 1) +i2 — low2) x sizeof(A[1,1])

And using: @A + (( i, — low, ) x (high, — low; + 1) +i; — low,) x sizeof(A[1,1])

Optimizing Address Calculation

In row-major order. | where w = sizeof(A[1,1]) |
Start with:
@A + ((i—low, ) * (high, = low, + 1) + ] — low,) * w
Distribute to:
@A + (i —low;) * (high,—low, + 1) * w + (j— low,) * w

Factor into:
@A +i* (high,~low,+1) * w +j* w —low, * (high,~low,+1) * w - low, * w
If low;, high, and w are known, the last two terms are a constant
Define @A, as: @A —low, * (high,~low,+1) * w - low, * w
and len, as (high,-low,+1)
Then, the address expression becomes: @A, + (i *len, +j) *w
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Array Address Calculations

Array address calculations are a major source of overhead

Scientific applications make extensive use of arrays and array-like
structures

o Computational linear algebra, both dense and sparse matrices

*Non-scientific applications use arrays, too
> Representations of other data structures
—Hash tables, adjacency matrices, tables, structures, ...

Array calculations tend iterate over arrays
°Loops execute more often than code outside loops

*Array address calculations inside loops make a huge difference in
efficiency of many compiled applications

Array Address Calculations in a Loop

Naive: Perform the address calculation twice: DOj=1,N

POI=L N Ali, ] = AL, ] + B[, j]
R1= @A, + (j * len, +1i) * sizeof(A[1,1]) END DO
R2 = @B, + (j * len, +i) * sizeof(A[1,1])
MEM(R1) = MEM(R1) + MEM(R2)

END DO




Array Address Calculations in a Loop

DOj=1,N
R1= @A, + (j * len, +1i) * sizeof(A[1,1])
R2 = @B, + (j * len, +i) * sizeof(A[1,1])
MEM(R1) = MEM(R1) + MEM(R2)

END DO

More sophisticated: Move common calculations out of loop

R1 =i * sizeof(A[1,1])
¢ = len, x sizeof(A[1,1])
R2 = @A, +R1
R3 = @B, + R1
DOj=1,N
a=j*c
R4=R2+a
R5=R3+a
MEM(R4) = MEM(R4) + MEM(R5)
END DO

Array Address Calculations in a Loop

R1 =i * sizeof(A[1,1])
¢ =len, x sizeof(A[1,1])
R2 = @A, +R1
R3 = @B, +R1
DOj=1,N
a=j*c
R4 =R2+a
R5=R3+a
MEM(R4) = MEM(R4) + MEM(R5)
END DO

Even more sophisticated: Use addition rather than multiplication

R1 =i * sizeof(A[1,1])
c =len, * sizeof(A[1,1])
R2 = @A, +R1
R3 = @B, + R1
DOJ=1,N
R2=R2+c
R3=R3+c
MEM(R2) = MEM(R2) + MEM(R3)
END DO
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Representing Strings

Two common representations

Explicit length field Length field may
Lejalslstlr]ilnlol [ tomnmier

@b

Null termination

al¥ls|r]r]ifn]g|v]
@b
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