1/10/20

Arrays and Strings

SOME OF THE SLIDES ARE FROM:

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 412 at Rice University have explicit permission to make copies
of these materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit
educational purposes, provided this copyright notice is preserved.

Array References

Storage schemes

Row-major order (most languages)
Lay out as a sequence of consecutive rows
Rightmost subscript varies fastest

A[1,1], A[1,2], A[1,3], A[2,1], A[2,2], A[2,3]

Column-major order (Fortran)
Lay out as a sequence of columns
Leftmost subscript varies fastest
Al1,1], A[2,1], A[1,2], A[2,2], A[1,3], A[2,3]

Indirection vectors (Java)
Vector of pointers to pointers to ... to values

Takes much more space, trades indirection for arithmetic

Laying Out Arrays

The Concept 5 | b1 [12]1.3]1.4

These can have

21122(23]|24

distinct & different

cache behavior

Row-major order A | 1,1 | 1,2 | 1

3|14|21]22]23]24]

Column-major order A | 1,1 | 2,1 | 1,

2[22[13]|23]14]24]

Indirection vectors A

1412 1,3]14]

21]22]23]24]

Ali]

> an offset from the ARP,
> an offset from some global label, or

° an arbitrary address.

Computing an Array Address

In general: base(A) + (i —low) x sizeof(A[1])
Depending on how A is declared, base(A) may be:

The first two are compile time constants.

1/10/20

1/10/20

Computing an Array Address

Ali] Color Code:
Tnvari
@A + (i—low) x sizeof(A[1]) nvariant

In general: base(A) + (i—low) x sizeof(A[1])

AITOST always a pfwer‘ of
; : ; 2, known at compile-time
int A[1:10] = low is 1 0 .

Make[low %) for faster = use a shift for speed
access (savesa-)

Computing an Array Address

Aliy, iy Color Code:
Invariant

Row-major order:

@A + ((iy —low;) x (high, = low, + 1) + i, — low,) x sizeof(A[1,1])
A[1,1], Al1,2], A[1,3], Al2,1], A[2,2], A[2,3]

Column-major order:
@A+ ((i, —low,) x (high, — low, + 1) +i; — low,) x sizeof(A[1,1])

Indirection vectors:

*(Ali;)i,] — where Alij] is, itself, a 1-d array reference

Z_‘ e.g., @A + (i; - low) x sizeof(A[1]) |

1/10/20

Example

Calculate address A[3,5] in:
12 3456

u b W N

Using: @A + ((i1 —low1) x (high2 —low2 + 1) +i2 — low2) x sizeof(A[1,1])

And using: @A + ((i, — low,) x (high, — low; + 1) +i; — low,) x sizeof(A[1,1])

Optimizing Address Calculation

In row-major order. | where w = sizeof(A[1,1]) |
Start with:
@A + ((i—low,) * (high, = low, + 1) +] — low,) * w
Distribute to:
@A + (i —low;) * (high,—low, + 1) * w + (j— low,) * w

Factor into:
@A +i* (high,~low,+1) * w +j* w —low, * (high,~low,+1) * w - low, * w
If low;, high, and w are known, the last two terms are a constant
Define @A, as: @A —low, * (high,~low,+1) * w - low, * w
and len, as (high,-low,+1)
Then, the address expression becomes: @A, + (i *len, +j) *w

1/10/20

Array Address Calculations

Array address calculations are a major source of overhead

Scientific applications make extensive use of arrays and array-like
structures

o Computational linear algebra, both dense and sparse matrices

*Non-scientific applications use arrays, too
> Representations of other data structures
—Hash tables, adjacency matrices, tables, structures, ...

Array calculations tend iterate over arrays
°Loops execute more often than code outside loops

*Array address calculations inside loops make a huge difference in
efficiency of many compiled applications

Array Address Calculations in a Loop

Naive: Perform the address calculation twice: DOj=1,N

POI=L N Ali,] = AL,] + B[, j]
R1= @A, + (j * len, +1i) * sizeof(A[1,1]) END DO
R2 = @B, + (j * len, +i) * sizeof(A[1,1])
MEM(R1) = MEM(R1) + MEM(R2)

END DO

Array Address Calculations in a Loop

DOj=1,N
R1= @A, + (j * len, +1i) * sizeof(A[1,1])
R2 = @B, + (j * len, +i) * sizeof(A[1,1])
MEM(R1) = MEM(R1) + MEM(R2)

END DO

More sophisticated: Move common calculations out of loop

R1 =i * sizeof(A[1,1])
¢ = len, x sizeof(A[1,1])
R2 = @A, +R1
R3 = @B, + R1
DOj=1,N
a=j*c
R4=R2+a
R5=R3+a
MEM(R4) = MEM(R4) + MEM(R5)
END DO

Array Address Calculations in a Loop

R1 =i * sizeof(A[1,1])
¢ =len, x sizeof(A[1,1])
R2 = @A, +R1
R3 = @B, +R1
DOj=1,N
a=j*c
R4 =R2+a
R5=R3+a
MEM(R4) = MEM(R4) + MEM(R5)
END DO

Even more sophisticated: Use addition rather than multiplication

R1 =i * sizeof(A[1,1])
c =len, * sizeof(A[1,1])
R2 = @A, +R1
R3 = @B, + R1
DOJ=1,N
R2=R2+c
R3=R3+c
MEM(R2) = MEM(R2) + MEM(R3)
END DO

1/10/20

Representing Strings

Two common representations

Explicit length field Length field may
Lejalslstlr]ilnlol [tomnmier

@b

Null termination

al¥ls|r]r]ifn]g|v]
@b

1/10/20

