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Code Generator for Expressions

expr(node) {
int result, tl, t2;
switch(type(node))
case X, =, +, -:

t1 < expr(LeftChild(node)); N
; : a X
t2 <« expr(RightChild(node));
result « NextRegister(): b'/ \c

emit(op(node), tl, t2, result);
(b) Abstract Syntax Tree for

break;
a-bxc
case IDENT:
tl <« base(node);
t2 <« offset(node);
result < NextRegister();
emit(loadAO, tl, t2, result);
break;
case NUM: loadl @a = r
result < NextRegister(): 10adAD rarp, r1 = re
emit(loadl, val(node), none, loadl @b = r3
result); T0adAO rarp,r3 = r4
break; loadl @c = rs
} ToadAO rarp.rs = Tg
return result; mult rq.re = ry
} sub ra,rz = rg
(a) Treewalk Code Generator (c) Naive Code

W FIGURE 7.5 Simple Treewalk Code Generator for Expressions.
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Code Shape

Definition

All those nebulous properties of the code that effect performance

Includes code, approach for different constructs, cost, storage
requirements and mapping and choice of operations

Code shape is the end product of many decisions

Code Shape Example

Xxty+z x+y—>tl x+z—>t1

y+tz—>t1

t1+z > t2 t1+y —>t2 t1+z > 2
+
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The “best” shape for x+y+z depends on contextual knowledge

> There may be several conflicting options, such as data that may or may not be
in registers already, especially if register space is maxed out.

> Data that may have been evaluated already, for example what if y+z was
evaluated earlier?




Boolean and Relational Values

Two classic approaches
> Numerical (explicit) representation
° Positional (implicit) representation

Best choice depends on both context and instruction set architecture.

Numerical Encoding

*Explicitly represent the result of

Boolean operations. Ly:
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Positional Encoding with
Short-Circuit Evaluation

. Posrﬂ[onflg colde represetr_1ts the W S a<b
result of Boolean operations. Gl o - Ly

° Expression:a<bvc<drex<f
Lpscomp re,rg 2ccp 1/ c<d

orll ccp =Ll

Lpocomp re,re ey /o<
hrll cc3 =31

L3: Toadl true = rg

Jumpl - Ls
Ly: Toadl false = rg

Jumpl - Ls
L5: nop

Issues

Instruction selection
Mapping IR into assembly code
Combining operations, using address modes

Instruction scheduling
Reordering operations to hide latencies
Changes demand for registers

Register allocation
Deciding which values will reside in registers
Changes the storage mapping, may add false sharing
Concerns about placement of data and memory operations

These three problems are tightly coupled.
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Reducing Demand for Registers

Consider the expression:a—b * ¢

Toadl @a = r Toadl @c = r
ToadAQ Farp, 't = i1 ToadAD Farp, 1 = I}
loadI @b = re Toadl @b = r
10adA0 rarp,.rz = rp ToadAQ rarp,rz = 12
loadl @c = r3 mult  ri,re =
10adA0 rarp,rr3 = 3 loadl @a = rp
mult ro,rj3 = rp loadAQ rarp,rz = rz
sub r,rs = r sub rg, T = r
(a) Example After Allocation (c) After Register Allocation




