Issues in Code
Generation

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 412 at Rice University have explicit permission to make copies of these
materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit educational purposes,
provided this copyright notice is preserved.

Code Generator for Expressions

expr(node) {
int result, tl, t2;
switch(type(node))
case X, =, +, -:

t1 < expr(LeftChild(node)); N
; : a X
t2 <« expr(RightChild(node));
result « NextRegister(): b'/ \c

emit(op(node), tl, t2, result);
(b) Abstract Syntax Tree for

break;
a-bxc
case IDENT:
tl <« base(node);
t2 <« offset(node);
result < NextRegister();
emit(loadAO, tl, t2, result);
break;
case NUM: loadl @a = r
result < NextRegister(): 10adAD rarp, r1 = re
emit(loadl, val(node), none, loadl @b = r3
result); T0adAO rarp,r3 = r4
break; loadl @c = rs
} ToadAO rarp.rs = Tg
return result; mult rq.re = ry
} sub ra,rz = rg
(a) Treewalk Code Generator (c) Naive Code

W FIGURE 7.5 Simple Treewalk Code Generator for Expressions.

1/9/20

1/9/20

Code Shape

Definition

All those nebulous properties of the code that effect performance

Includes code, approach for different constructs, cost, storage
requirements and mapping and choice of operations

Code shape is the end product of many decisions

Code Shape Example

Xxty+z x+y—>tl x+z—>t1

y+tz—>t1

t1+z > t2 t1+y —>t2 t1+z > 2
+

AN ANA\
A /X‘ AN

The “best” shape for x+y+z depends on contextual knowledge

> There may be several conflicting options, such as data that may or may not be
in registers already, especially if register space is maxed out.

> Data that may have been evaluated already, for example what if y+z was
evaluated earlier?

Boolean and Relational Values

Two classic approaches
> Numerical (explicit) representation
° Positional (implicit) representation

Best choice depends on both context and instruction set architecture.

Numerical Encoding

*Explicitly represent the result of

Boolean operations. Ly:
°Expression:a<bvc<drex<f Lp:
L3:
Lg:
Ls:
Le:
L7:
Lg:

Lg:

comp
cbr_oLT
Toadl
Jumpl
ToadI
Jjumpl

comp
cbr_LT
Toadl
JjumpI
lToadI
Jjumpl
comp
cbr_ LT
ToadlI
JumpI
ToadlI
JjumpI
and
or

Ma,. b
ccy

true
— L3
false
— L3

fc, "d
CcCp

true
— L
false
— Leg

re, rf
ccy
true

false

ro, ra
ri, rg

R

P el

ccy // a<b
Ly, L2

ri

ccp // c<d
L4, Ls

rz

ra2

ccy // e < f
L7, Ls

1/9/20

Positional Encoding with
Short-Circuit Evaluation

. Posrﬂ[onflg colde represetr_1ts the W S a<b
result of Boolean operations. Gl o - Ly

° Expression:a<bvc<drex<f
Lpscomp re,rg 2ccp 1/ c<d

orll ccp =Ll

Lpocomp re,re ey /o<
hrll cc3 =31

L3: Toadl true = rg

Jumpl - Ls
Ly: Toadl false = rg

Jumpl - Ls
L5: nop

Issues

Instruction selection
Mapping IR into assembly code
Combining operations, using address modes

Instruction scheduling
Reordering operations to hide latencies
Changes demand for registers

Register allocation
Deciding which values will reside in registers
Changes the storage mapping, may add false sharing
Concerns about placement of data and memory operations

These three problems are tightly coupled.

1/9/20

1/9/20

Reducing Demand for Registers

Consider the expression:a—b * ¢

Toadl @a = r Toadl @c = r
ToadAQ Farp, 't = i1 ToadAD Farp, 1 = I}
loadI @b = re Toadl @b = r
10adA0 rarp,.rz = rp ToadAQ rarp,rz = 12
loadl @c = r3 mult ri,re =
10adA0 rarp,rr3 = 3 loadl @a = rp
mult ro,rj3 = rp loadAQ rarp,rz = rz
sub r,rs = r sub rg, T = r
(a) Example After Allocation (c) After Register Allocation

